Resistance of rice Oryza sativa L.. doubled haploids to lodging for the far eastern breeding
- Authors: Ilyushko M.V1, Romashova M.V1, Guchenko S.S1
-
Affiliations:
- Chaika Federal Scientific Center for Agrobiotechnology of the Far East
- Issue: No 2 (2023)
- Pages: 30-34
- Section: Articles
- URL: https://bakhtiniada.ru/2500-2627/article/view/144601
- DOI: https://doi.org/10.31857/S2500262723020072
- EDN: https://elibrary.ru/AOYHGU
- ID: 144601
Cite item
Abstract
Keywords
About the authors
M. V Ilyushko
Chaika Federal Scientific Center for Agrobiotechnology of the Far East
Email: ilyushkoiris@mail.ru
692539, Primorskii krai, Ussuriisk, pos. Timiryazevskii, ul. Volozhenina, 30
M. V Romashova
Chaika Federal Scientific Center for Agrobiotechnology of the Far East692539, Primorskii krai, Ussuriisk, pos. Timiryazevskii, ul. Volozhenina, 30
S. S Guchenko
Chaika Federal Scientific Center for Agrobiotechnology of the Far East692539, Primorskii krai, Ussuriisk, pos. Timiryazevskii, ul. Volozhenina, 30
References
- Genealogy of the "green revolution" gene in rice / H. Nagano, K. Onishi, M. Ogasawara, et al. // Genes. Genet. Syst. 2005. Vol. 80. P. 351-356. doi: 10.1266/ ggs.80.351.
- QTL-seq-based genetic analysis identifies a major genomic region governing dwarfness in rice (Oryza sativa L.) / G. Kadambari, L. R. Vemireddy, A. Srividhya, et al. // Plant. Cell. Reports. 2018. Vol. 37. P. 677-687. doi: 10.1007/s00299-018-2260-2.
- Three genetic systems controlling growth, development and productivity of rice (Oryza sativa L.): a reevaluation of the "green revolution" / F. Zhang, Y.-Z. Jiang, S.-B. Yu., et al. // Theor. Appl. Genet. 2013. Vol. 126. P. 1011- 1024. doi: 10.1007/s00122-012-2033-1.
- Deep rooting conferred by DEEPER ROOTING1 enhances rice yield in paddy fields / Y. Arai-Sanoh,T. Takai, S. Yashinaga, et al. // Sci. Rep. 2014. Vol.4. Article 5563. URL: https://www.nature.com/articles/srep05563 (дата обращения: 21.05.2022). doi: 10.1038/srep05563.
- Valluru R., Reynolds M. P., Salse J. Genetic and molecular bases of yield-associated traits: a translational biology approach between rice and wheat // Theor. Appl. Genet. 2014. Vol. 127. P. 1463-1489. doi: 10.1007/ s00122-014-2332-9.
- Гончарова Ю. К., Гончаров С. В., Чичарова Е. Е. Локализация хромосомных регионов, определяющих эффективность фотосинтеза у российских сортов риса // Генетика. 2018. T. 54. № 7. С. 785-794. doi: 10.1134/S0016675818070032.
- Development and validation of allele-specific SNP/ indel markers for eight yield-enhancing genes using whole-genome sequencing strategy to increase yield potential of rice Oryza sativa L. / S. Kim, J. Ramos, M. Ashikari, et al. // Rice. 2016. Vol. 9. Article12. URL: https://thericejournal.springeropen.com/articles/10.1186/s12284-016-0084-7 (дата обращения: 26.05.2022). doi: 10.1186/s12284-016-0084-7.
- Rational desigh of high-yield and superior-quality rice / D. Zeng, Z. Tian, Y. Rao, et al. // Nature Plants. 2017. Vol. 3. Article 17031. URL: https://www.nature.com/articles/nplants201731 (дата обращения: 18.12.2021). doi: 10.1038/nplants.2017.31.
- Effect of rice breeding process on improvement of yield and quality in China / F. Cheng, X. Quan, X. Znengjin, et al. // Rice Sci. 2020. Vol. 27. No. 5. P. 363-367. doi: 10.1016/j.rsci.2019.12.009.
- Isolation of a novel lodging resistance QTL gene involved in strigolactone signaling and its pyramiding with aQTL gene involved in another mechanism / K. Yano, T. Ookawa, K. Aya, et al. // Molecular Plant. 2015. Vol.8. P. 303-314. doi: 10.1016/j.molp.2014.10.009.
- Genome-wide binding analysis of the transcription activator IDEAL PLANT ARCHITECTURE1 reveals a complex network regulating rice plant architecture / Z. Lu, H. Yu, G. Xiong, et al. // Plant Cell. 2013. Vol. 25. P. 3743-3759. doi: 10.1105/tpc.113.113639.
- Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice / Y. Jiao, Y. Wang, D. Xue, et al. // Neture Genetics. 2010. Vol. 42. No. 6. P. 541-545. doi: 10.1038/ng.591.
- Molecular breeding of "Swarna", a mega rice variety for lodging resistance / G. R. Merugumala, P. V. Satyanarayana, N. Chamundeswari, et al. // Mol. Breeding. 2019. Vol. 39. Article 55. URL: https://link.springer.com/article/10.1007/s11032-019-0961-z (дата обращения: 11.11.2021). doi: 10.1007/s11032-019-0961-z.
- Morphological and molecular characterization of new plant type core set for yield and culm strength traits in rice (Oryza sativa L.) / R. Bagudam, K. B. Eswari, J. Badri, et al. //j. Plant Biochem. Biotechnol. 2021. Vol. 30. P. 233-242. doi: 10.1007/s13562-020-00581-w.
- Sarao N. K., Gosal S. S. In vitro androgenesis for accelerated breeding in rice // Biotechnologies of crop improvement. Springer, Cham. Springer International Publishing AG, Switzerland, 2018. Vol. 1. P. 407-435. doi: 10.1007/978-3-319-78283-6.
- Илюшко М. В., Гученко С. С., Ромашова М. В. Внутрикаллусная и межкаллусная морфологическая изменчивость удвоенных гаплоидов риса, полученных андрогенезе in vitro // Российская сельскохозяйственная наука, 2020. № 6. С. 11-15. doi: 10.31857/2500262720060034.
- Dependence of porosity of amorphous silicon dioxide prepared from rice straw on plant variety / L. A. Zhemnukhova, A. E. Panasenko, A. A. Artem'yanov, et al. // BioResources. 2015. Vol. 10. No. 2. P. 3713-3723. doi: 10.15376/biores.10.2.3713-3723.
- Гученко С. С., Борзаница А. А., Бельская Н. Г. Оценка селекционных образцов риса конкурсного сортоиспытания в условиях Приморского края // Дальневосточный аграрный вестник. 2021. Т. 4. № 60. С. 40-46. doi: 10.24412/1999-6837-2021-4-40-45.
- Гены сельскохозяйственных растений, модифицированные с помощью системы CRISPR/Cas / А. М. Короткова, С. В. Герасимова, В. К. Шумный и др. // Вавиловский журнал генетики и селекции. 2017. Т. 21. № 2. С. 250-258. doi: 10.18699/VJ17.244.
Supplementary files
