The role of single nucleotide variants of folate cycle genes of a mother with epilepsy in the occurrence of congenital malformations of the fetus

Cover Page

Cite item

Full Text

Abstract

Aim – to study the frequency of single-nucleotide variants (SNV) rs1801133 and rs1801131 of the MTHFR gene; rs1801394 of the MTRR gene, rs1805087 of the MTR gene and rs1051266 of the SLC19A1 gene in women with epilepsy and to evaluate their associations with major congenital malformations (MCM) of the fetus.

Material and methods. The study included 61 women with epilepsy who have children: 20 had different fetal MCM (main group), 41 patients had children born without MCM (comparison group). DNA was extracted from blood, and the genotyping of five SNVs into four genes was analyzed by polymerase chain reaction. The frequencies of genotypes and alleles in the mothers of the main and the comparison group were determined, the differences were assessed using Pearson's chi-squared criterion (χ2) and Fisher's exact criterion.

Results. There were no statistically significant differences in the frequencies of genotypes and alleles for all analyzed SNVs between the main group and the comparison group. There were no statistically significant differences in the frequencies of genotypes and alleles of SNV of the studied genes of the folate cycle in mothers of children with malformations (n = 14) and without malformations (n = 22), taking valproic acid. A statistically significant relationship was revealed between the carrier of a certain haplogroup of the mother and the formation of fetal MCM.

Conclusion. The MCM in a child is a multifactorial phenomenon in which genetic factors with a small effect size can play a significant role only in the case of certain unfavorable combinations.

About the authors

Albina V. Yakunina

Samara State Medical University

Author for correspondence.
Email: a.v.yakunina@samsmu.ru
ORCID iD: 0000-0002-7996-5213

PhD, Associate professor of the Department of neurology and neurosurgery

Russian Federation, Samara

Anna A. Usoltseva

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University

Email: a.usoltseva@list.ru
ORCID iD: 0000-0002-9678-6719

assistant of the Department of medical genetics and clinical neurophysiology of the Institute of Postgraduate Education

Russian Federation, Krasnoyarsk

Vladimir A. Kalinin

Samara State Medical University

Email: v.a.kalinin@samsmu.ru
ORCID iD: 0000-0003-3233-8324

PhD, MD, Professor of the Department of neurology and neurosurgery

Russian Federation, Samara

Irina E. Poverennova

Samara State Medical University

Email: i.e.poverennova@samsmu.ru
ORCID iD: 0000-0002-2594-461X

PhD, MD, Professor, Head of the Department of neurology and neurosurgery

Russian Federation, Samara

Yulia V. Myakisheva

Samara State Medical University

Email: yu.v.myakisheva@samsmu.ru
ORCID iD: 0000-0003-0947-511X

PhD, MD, Head of the Department of general and molecular biology

Russian Federation, Samara

References

  1. Karlov VA, Vlasov PN, Petrukhin VA, et al. Chapter 32. Female epilepsy. In: Epilepsy in children and adults females and males. Physicians’ manual. M., 2019:672-691. (In Russ.). [Карлов В.А., Власов П.Н., Петрухин В.А., Жидкова И.А., Адамян Л.В. Глава 32. Эпилепсия у женщин. В кн.: Эпилепсия у детей и взрослых женщин и мужчин. Руководство для врачей. М., 2019:672-691]. ISBN 975-5-6042641-0-2
  2. Meador KJ. Effects of Maternal Use of Antiseizure Medications on Child Development. Neurol Clin. 2022;40(4):755-768. DOI: https://doi.org/10.1016/j.ncl.2022.03.006
  3. Holmes LB, Quinn M, Conant S, et al. Ascertainment of malformations in pregnancy registries: Lessons learned in the North American AED Pregnancy Registry. Birth Defects Res. 2023;115(14):1274-1283. DOI: https://doi.org/10.1002 / bdr2.2188
  4. Laganа AS, Triolo O, D'Amico V, et al. Management of women with epilepsy: from preconception to post-partum. Arch Gynecol Obstet. 2016;293(3):493-503. DOI: https://doi.org/10.1007/s00404-015-3968-7
  5. Dmitrenko DV, Shnayder NA, Egorova AT. Epilepsy and pregnancy. M., 2014. (In Russ.). [Дмитренко Д.В., Шнайдер Н.А., Егорова А.Т. Эпилепсия и беременность. М., 2014]. ISBN 978-5-98495-025-1
  6. Keni RR, Jose M, Sarma PS, Thomas SV. Kerala Registry of Epilepsy and Pregnancy Study Group.Teratogenicity of antiepileptic dual therapy: Dose-dependent, drug-specific, or both? Neurology. 2018;90(9):e790-e796. DOI: https://doi.org/10.1212/WNL.0000000000005031
  7. Cohen JM, Alvestad S, Cesta CE, et al. Comparative Safety of Antiseizure Medication Monotherapy for Major Malformations. Ann Neurol. 2023;93(3):551-562. DOI: https://doi.org/10.1002/ana.26561
  8. Dmitrenko DV, Shnayder NA, Strotskaya IG, et al. Mechanisms of valproate-induced teratogenesis. Neurology, Neuropsychiatry, Psychosomatics. 2017;1S:89-96. (In Russ.). [Дмитренко Д.В., Шнайдер Н.А., Строцкая И.Г., и др. Механизмы вальпроат-индуцированного тератогенеза. Неврология, нейропсихиатрия, психосоматика. 2017;спецвыпуск 1:89-96]. DOI: https://doi.org/10.14412/2074-2711-2017-1S-89-96
  9. Shengelia МO, Bespalova ON, Shengelia ND, et al. Folate-dependent congenital malformations of the fetus. Womens health and reproduction. 2022;1(52):49-57. (In Russ.). [Шенгелия М.О., Беспалова О.Н., Шенгелия Н.Д., Балдин А.В. Фолатзависимые врожденные пороки развития плода. Женское здоровье и репродукция. 2022;1(52):49-57]. URL: https://whfordoctors.su/statyi/folatzavisimye-vrozhdjonnye-poroki-razvitija-ploda/
  10. Sijilmassi O, Del Río Sevilla A, Maldonado Bautista E, Barrio Asensio MDC. Gestational folic acid deficiency alters embryonic eye development: Possible role of basement membrane proteins in eye malformations. Nutrition. 2021;90:111250. DOI: https://doi.org/10.1016/j.nut.2021.111250
  11. Almekkawi AK, Al Jardali MW, Daadaa HM, et al. Folate Pathway Gene Single Nucleotide Polymorphisms and Neural Tube Defects: A Systematic Review and Meta-Analysis. J Pers Med. 2022;12(10):1609. DOI: https://doi.org/10.3390/jpm12101609
  12. Liew SC, Gupta ED. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: epidemiology, metabolism and the associated diseases. European journal of medical genetics. 2015;58(1):1-10. DOI: https://doi.org/10.1016/j.ejmg.2014.10.004
  13. Levin BL, Varga E. MTHFR: Addressing Genetic Counseling Dilemmas Using Evidence-Based Literature. J Genet Couns. 2016;25(5):901-11. DOI: https://doi.org/10.1007 / s10897-016-9956-7
  14. Kokh NV, Slepukhina AA, Lifshits GI. Folate cycle: review and practical recommendations for the interpretation of the genetic tests. Medical genetics. 2015;11:3-8. (In Russ.). [Кох Н.В., Слепухина А.А., Лившиц Г.И. Фолатный цикл: обзор и практические рекомендации по интерпретации генетических тестов. Медицинская генетика. 2015;11:3-8]. DOI: https://doi.org/10.1234/XXXX-XXXX-2015-11-3-8
  15. Findley TO, Tenpenny JC, O'Byrne MR, et al. Mutations in folate transporter genes and risk for human myelomeningocele. Am J Med Genet A. 2017;173(11):2973-2984. DOI: https://doi.org/10.1002/ajmg.a.38472
  16. Taiwo ET, Cao X, Cabrera RM, et al. Approaches to studying the genomic architecture of complex birth defects. Prenat Diagn. 2020;40(9):1047-1055. DOI: https://doi.org/10.1002/pd.5760
  17. Dewelle WK, Melka DS, Aklilu AT, et al. Polymorphisms in Maternal Selected Folate Metabolism-Related Genes in Neural Tube Defect-Affected Pregnancy. Adv Biomed Res. 2023;12:160. DOI: https://doi.org/10.4103/abr.abr_103_22
  18. Godbole K, Gayathri P, Ghule S, et al. Maternal one-carbon metabolism, MTHFR and TCN2 genotypes and neural tube defects in India. Birth Defects Res A Clin Mol Teratol. 2011;91:848-56. DOI: https://doi.org/10.1002/bdra.20841
  19. Ouyang S, Li Y, Liu Z, Chang H, Wu J. Association between MTR A2756G and MTRR A66G polymorphisms and maternal risk for neural tube defects: A meta-analysis. Gene. 2013;515:308-12. DOI: https://doi.org/10.1016/j.gene.2012.11.070
  20. Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic. Cell. 2017;169(7):1177-1186. DOI: https://doi.org/10.1016/j.cell.2017.05.038
  21. Finnell RH, Caiaffa CD, Kim SE, et al. Gene environment interactions in the etiology of neural tube defects. Front Genet. 2021;10;12:659612. DOI: https://doi.org/10.3389/fgene.2021.659612
  22. Choi SW, Mak TS. O'Reilly P.F. Tutorial: a guide to performing polygenic risk score analyses. Nat Protoc. 2020;15(9):2759-2772. DOI: https://doi.org/10.1038 /s41596-020-0353-1

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Yakunina A.V., Usoltseva A.A., Kalinin V.A., Poverennova I.E., Myakisheva Y.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».