Metabolic effects of 3-substituted chromone derivatives in experimental chronic traumatic encephalopathy
- Authors: Pozdnyakov D.I.1
-
Affiliations:
- Pyatigorsk Medical-Pharmaceutical Institute – branch of Volgograd State Medical University
- Issue: Vol 7, No 3 (2022)
- Pages: 206-211
- Section: Pharmacology
- URL: https://bakhtiniada.ru/2500-1388/article/view/110765
- DOI: https://doi.org/10.35693/2500-1388-2022-7-3-206-211
- ID: 110765
Cite item
Full Text
Abstract
Aim – to evaluate the effect of five new 3-substituted chromone derivatives on changes in mitochondrial function and the development of tau pathology in animals under experimental chronic traumatic encephalopathy.
Material and methods. Chronic traumatic encephalopathy was modeled in Wistar rats by repeated exposure to a shock wave (2 atm.) on the animal's head for seven days. The studied compounds (X3A1 – X3A5) and the reference citicoline were administered 60 minutes after injury at doses of 40 mg/kg and 150 mg/kg orally. On the eighth day of the experiment, changes in the mass coefficient of the brain, the concentration of phosphorylated tau protein in brain tissue and changes in the activity of cytochrome-c-oxidase and succinate dehyrogenase were evaluated in animals.
Results. The use of compounds X3A4 and X3A5 equally to citicoline reduced the development of tau pathology, increased the activity of mitochondrial enzymes: cytochrome-c-oxidase – by 14.5% (p<0.05), 41.9% (p<0.05) and 22.6% (p<0.05), respectively; succinate dehydrogenase – by 28.6% (p<0.05); 33.2% (p<0.05) and 22.8% (p<0.05), respectively. As a result, against the background of the administration of these compounds, an increase in brain mass coefficient was noted in relation to the animals that did not receive a pharmacological support.
Conclusion. Administration of chromone derivatives X3A4 and X3A5 to animals with experimental chronic traumatic encephalopathy prevents the development of tau pathology and atrophy of brain tissue, probably due to metabolic action, expressed in the restoration of mitochondrial function.
Full Text
##article.viewOnOriginalSite##About the authors
Dmitrii I. Pozdnyakov
Pyatigorsk Medical-Pharmaceutical Institute – branch of Volgograd State Medical University
Author for correspondence.
Email: pozdniackow.dmitry@yandex.ru
ORCID iD: 0000-0002-5595-8182
PhD, Associate professor, Department of Pharmacology with a course of clinical pharmacology
Russian Federation, PyatigorskReferences
- Smith DH, Johnson VE, Trojanowski JQ, Stewart W. Chronic traumatic encephalopathy – confusion and controversies. Nat Rev Neurol. 2019;15(3):179-183. doi: 10.1038/s41582-018-0114-8
- McKee AC, Stern RA, Nowinski CJ, et al. The spectrum of disease in chronic traumatic encephalopathy. Brain. 2013;136(Pt 1):43-64. doi: 10.1093/brain/aws307
- Pourhadi N, Ringkøbing SP, Waldemar G, Frederiksen KS. Chronic traumatic encephalopathy. Ugeskr Laeger. 2021;183(23):V12200919
- Mez J, Daneshvar DH, Kiernan PT, et al. Clinicopathological Evaluation of Chronic Traumatic Encephalopathy in Players of American Football. JAMA. 2017;318(4):360-370. doi: 10.1001/jama.2017.8334
- Kulbe JR, Hall ED. Chronic traumatic encephalopathy-integration of canonical traumatic brain injury secondary injury mechanisms with tau pathology. Prog Neurobiol. 2017;158:15-44. doi: 10.1016/j.pneurobio.2017.08.003
- Höglinger GU, Lannuzel A, Khondiker ME, et al. The mitochondrial complex I inhibitor rotenone triggers a cerebral tauopathy. J Neurochem. 2005;95(4):930-9. doi: 10.1111/j.1471-4159.2005.03493.x
- Kokjohn TA, Maarouf CL, Daugs ID, et al. Neurochemical profile of dementia pugilistica. J Neurotrauma. 2013;30:981-997.
- Rukovitsyna VM, Pozdnyakov DI, Cheryapkin AS, Oganesyan ET. Derivatives of 3-formylchromone as modulators of mitochondrial complex III activity. Bulletin of the Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2020;4:114-121. (In Russ.). [Руковицина В.М., Поздняков Д.И., Чиряпкин А.С., Оганесян Э.Т. Производные 3-формилхромона как модуляторы активности митохондриального комплекса III. Вестник Воронежского государственного университета. Серия: Химия. Биология. Фармация. 2020;4:114-121].
- Toklu HZ, Yang Z, Ersahin M, Wang KKW. Neurological Exam in Rats Following Stroke and Traumatic Brain Injury. Methods Mol Biol. 2019;2011:371-381. doi: 10.1007/978-1-4939-9554-7_21
- Abdolmaleki A, Moghimi A, Ghayour MB, Rassouli MB. Evaluation of neuroprotective, anticonvulsant, sedative and anxiolytic activity of citicoline in rats. Eur J Pharmacol. 2016;789:275-279. doi: 10.1016/j.ejphar.2016.07.048
- Li Y, D'Aurelio M, Deng JH. An assembled complex IV maintains the stability and activity of complex I in mammalian mitochondria. J Biol Chem. 2007; 24:17557-17562.
- Wang H, Huwaimel B, Verma K. Synthesis and Antineoplastic Evaluation of Mitochondrial Complex II (Succinate Dehydrogenase) Inhibitors Derived from Atpenin A5. Chem Med Chem. 2017;12(13):1033-1044.
- Jadhav S, Avila J, Schöll M, et al. A walk through tau therapeutic strategies. Acta Neuropathol Commun. 2019;7(1):22. doi: 10.1186/s40478-019-0664-z
- Gu H, Dodel R, Farlow MR, Du Y. Advances in the development of antibody-based immunotherapy against prion disease. Antibody Technology Journal. 2014;4:45-55 doi: 10.2147/ANTI.S53336
- Kabadi SV, Stoica BA, Byrnes KR, et al. Selective CDK inhibitor limits neuroinflammation and progressive neurodegeneration after brain trauma. J Cereb Blood Flow Metab. 2012;32(1):137-149. doi: 10.1038/jcbfm.2011.117
- Ng SY, Lee AYW. Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front Cell Neurosci. 2019;13:528. doi: 10.3389/fncel.2019.00528
- Lohr KM, Frost B, Scherzer C, Feany MB. Biotin rescues mitochondrial dysfunction and neurotoxicity in a tauopathy model. Proc Natl Acad Sci USA. 2020;117(52):33608-33618. doi: 10.1073/pnas.1922392117
- Goldstein LE, Fisher AM, Tagge CA, et al. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci Transl Med. 2012;4(134):134ra60. doi: 10.1126/scitranslmed.3003716
- Rak M, Bénit P, Chrétien D, et al. Mitochondrial cytochrome c oxidase deficiency. Clin Sci (Lond). 2016;130(6):393-407. doi: 10.1042/CS20150707
- Schumacker PT. Mitochondrial Succinate Dehydrogenase in Chronic Obstructive Pulmonary Disease: Is Complex II Too Complex? Am J Respir Cell Mol Biol. 2021;65(3):231-232. doi: 10.1165/rcmb.2021-0200ED
- Umemoto Y, Patel A, Huynh T, Chitravanshi VC. Wogonin attenuates the deleterious effects of traumatic brain injury in anesthetized Wistar rats. Eur J Pharmacol. 2019;848:121-130. doi: 10.1016/j.ejphar.2019.01.035
- Wang JW, Wang HD, Cong ZX, Zhou XM, Xu JG, Jia Y, Ding Y. Puerarin ameliorates oxidative stress in a rodent model of traumatic brain injury. J Surg Res. 2014;186(1):328-37. doi: 10.1016/j.jss.2013.08.027
- Segovia-Oropeza M, Santiago-Castañeda C, Orozco-Suárez SA, Concha L, Rocha L. Sodium Cromoglycate Decreases Sensorimotor Impairment and Hippocampal Alterations Induced by Severe Traumatic Brain Injury in Rats. J Neurotrauma. 2020;37(23):2595-2603. doi: 10.1089/neu.2019.6975
Supplementary files
