🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

STUDYING DYNAMICS OF ENERGY SPECTRUM OF SOLAR DIURNAL VARIATIONS IN COSMIC RAYS DURING SOLAR ACTIVITY CYCLES 20–25, USING METHOD OF CROSSED MUON TELESCOPES

Обложка

Цитировать

Полный текст

Аннотация

The cosmic ray (CR) intensity recorded by ground-based detectors experiences solar diurnal variations (SDVs) associated with the existence of anisotropic angular distribution of CRs in near-Earth space. Long-term observations show that SDVs exhibit a dependence on the solar activity cycle, experiencing periodic 11- and 22-year variations. Such behavior of SDVs is linked to a change in the nature of galactic CR propagation in the heliosphere when it changes during a solar activity cycle. On the other hand, this phenomenon can be partially due to a change in the magnitude of CR drift by the geomagnetic field associated with changes in the SDV energy spectrum.
In this work, we determine the dynamics of the SDV energy spectrum in solar activity cycles. The solution to this problem presents certain difficulties associated with peculiarities of ground-based CR recording and with the sensitivity of CR detectors to changes in the state of environment. Therefore, we employ an approach using crossed muon telescopes to estimate it, which allows us to bypass the above difficulties. We analyze data from Yakutsk, Nagoya, Sao Martinho, and Hobart muon telescopes for 1972–2022. It is shown that at solar minima during periods of positive polarity of the Sun's general magnetic field, a significant softening of the spectrum is observed. The results are discussed.

Об авторах

Петр Юрьевич Гололобов

Институт космофизических исследований и аэрономии им. Ю.Г. Шафера СО РАН

Email: gpeter@ikfia.sbras.ru
ORCID iD: 0000-0003-2184-8089

Владислав Георгиевич Григорьев

Институт космофизических исследований и аэрономии им. Ю.Г. Шафера СО РАН

Email: grig@ikfia.ysn.ru
ORCID iD: 0000-0002-1348-4708
кандидат физико-математических наук

Сардаана Кимовна Герасимова

Институт космофизических исследований и аэрономии им. Ю.Г. Шафера СО РАН

Email: danagsk@mail.ru
ORCID iD: 0000-0003-1247-4513
кандидат физико-математических наук

Список литературы

  1. Ahluwalia H.S. A correlation between IMF and the limiting primary rigidity for cosmic ray diurnal anisotropy. Geophys. Res. Lett. 1992, vol. 19, iss. 6, pp. 633–636. doi: 10.1029/92GL00525.
  2. Ahluwalia H.S., Sabbah I.S. The limiting primary rigidity of cosmic ray diurnal anisotropy. Planet. Space Sci. 1993, vol. 41, iss. 2, pp. 105–112. doi: 10.1016/0032-0633(93)90038-4.
  3. Berkova M.D., Grigoryev V.G., Preobrazhensky M.S., Zverev A.S., Yanke V.G. Temperature effect observed for the muon component in the Yakutsk cosmic-ray spectrograph. Physics of Atomic Nuclei. 2018, vol. 81, no. 6, pp. 742–751. doi: 10.1134/S1063778818050046.
  4. Chuprova V.P., Gerasimova S.K., Grigoryev V.G., Krivoshapkin P.A., Krymsky G.F., Mamrukova V.P., et al. The brief history of experimental research of cosmic ray variations in Yakutia, Adv. Space Res. 2009, vol. 44, iss. 10., pp. 1200–1206. doi: 10.1016/j.asr.2008.12.024.
  5. Dorman L.I. Variatsii kosmicheskikh luchey [Variations of Cosmic Rays]. Moscow: Gosudarstvennoe izdatel’stvo tekhniko-teoreticheskoi literatury (State Publishing House of Technical and Theoretical Literature), 1957, 492 p. (In Russian).
  6. Dorman L.I., Smirnov V.S., Tyasto M.I. Kosmicheskie luchi v magnitnom pole Zemli [Cosmic Rays in the Earth's Magnetic Field]. Moscow: Nauka (Science), 1971, 400 p. (In Russian).
  7. Fujimoto K., Inoue A., Murakami K., Nagashima K. Coupling coefficients of cosmic ray daily variation for meson telescopes. Report of Cosmic-Ray Research Lab. Nagoya University. 1984, no. 9.
  8. Gerasimova S.K., Gololobov P.Yu., Grigoryev V.G., Krivoshapkin P., Krymsky G., Starodubtsev S. Heliospheric modulation of cosmic rays: model and observation. Sol.-Terr. Phys. 2017, vol. 3, iss. 1, pp. 78–102. doi: 10.12737/article_58f970f2455545.93154609.
  9. Gololobov P.Yu., Krivoshapkin P.A., Krymsky G.F., Gerasimova S.K. Investigating the influence of geometry of the heliospheric neutral current sheet and solar activity on modulation of galactic cosmic rays with a method of main components. Sol.-Terr. Phys. 2020, vol. 6, iss. 1, pp. 24–28. doi: 10.12737/stp-61202002.
  10. Hall D.L., Duldig M.L., Humble J.E. Cosmic-ray modulation parameters derived from the solar diurnal variation. Astrophys. J. 1997, vol. 482, pp. 1038–1049. doi: 10.1086/304158.
  11. Kóta J., Munakata K., Yasue S., Kato C., Mori S. The origin of solar diurnal variation of galactic cosmic rays above 100 GV. Proc. 30th ICRC. 2008, vol. 1, pp. 589–592.
  12. Krymsky G.F., Kuzmin A.I., Chirkov N.P. Distribution of cosmic rays and detector response vectors. I. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 1966, vol. 6, iss. 6, pp. 991–996. (In Russian).
  13. Krymsky G.F., Kuzmin A.I., Chirkov N.P., et al. Distribution of cosmic rays and detector response vectors. II. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 1967, vol. 7, iss. 1, pp. 11–15. (In Russian).
  14. Munakata K., Mizoguchi Y., Kato C., Yasue S., Mori S., Takita M., Kóta J. Solar cycle dependence of the diurnal anisotropy of 0.6 TeV cosmic-ray intensity observed with the Matsushiro underground muon detector. Astrophys. J. 2010, vol. 712, pp. 1100–1106. doi: 10.1088/0004-637X/712/2/1100.
  15. Nikolashkin S.V., Titov S.V., Gololobov P.Yu. The effect of winter stratospheric warmings on the intensity of the muon component of secondary cosmic rays. Proc. 26th International Symposium on Atmospheric and Ocean Optics. Atmospheric Physics. 2020, vol. 11560. doi: 10.1117/12.2575697.
  16. Okazaki Y., Fushishita A., Narumi T., Kato C., Yasue S., Kuwabara T., et al. Drift effects and the cosmic ray density gradient in a solar rotation period: first observation with the Global Muon Detector Network (GMDN). Astrophys. J. 2008, vol. 681, pp. 693–707. doi: 10.1086/588277.
  17. Pomerantz M.A., Duggal S.P. The cosmic ray solar diurnal anisotropy. Space Sci. Rev. 1971, vol. 12, pp. 75–130. doi: 10.1007/BF00172130.
  18. Rao U.R., McCracken K.G., Venkatesan D. Asymptotic cones of acceptance and their use in the study of the daily variation of cosmic ray radiation. J. Geophys. Res. 1963, vol. 68, iss. 2, pp. 345–369. doi: 10.1029/JZ068i002p00345.
  19. Riker J.F., Ahluwalia H.S., Sabbah I.S. The limiting primary rigidities for the cosmic ray diurnal anisotropy during a solar magnetic cycle. EOS: Trans. Am. Geophys. Union. 1989, vol. 70, 1256.
  20. Sabbah I. Solar magnetic polarity dependency of the cosmic ray diurnal variation. J. Geophys. Res: Space Phys. 2013, vol. 118, pp. 4739–4747. doi: 10.1002/jgra.50431.
  21. Skripin G.V. Issledovanie anizotropii kosmicheskikh luchey metodom skreshchennykh teleskopov [Study of the anisotropy of cosmic rays using the crossed telescopes method]. Cand. of Phys. and Math. Sci. diss. Yakutsk, 1965, 184 p. (In Russian).
  22. Skripin G.V., Krivoshapkin P.A., Krymsky G.F., Filippov V.A. Study of cosmic ray anisotropy using the crossed telescopes method. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 1965, vol. 5, iss. 5, pp. 817–822. (In Russian).
  23. URL: https://cosray.shinshu-u.ac.jp/crest/DB/Public/main.php (accessed March 7, 2025).
  24. URL: https://ysn.ru/ipm/ (accessed March 7, 2025).
  25. URL: http://hdl.handle.net/10091/0002001448 (accessed March 7, 2025).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».