Методика оценки важности признаков при анализе выполнения государственных контрактов

Обложка

Цитировать

Полный текст

Аннотация

Предметом исследования статьи является оценка рисков выполнения государственных контрактов. Объектом исследования является процесс анализа и оценки выполнения государственных контрактов. Исследование направлено на разработку методики, определяющей важность и значимость признаков, влияющих на риск невыполнения государственных контрактов. Применялись методы исследования: анализ данных, для обнаружения связей и зависимостей между различными признаками и риском невыполнения государственных контрактов; статистический анализ, для получения оценки влияния каждого признака на риск невыполнения контрактов и ранжирования их по степени важности; машинное обучение, для прогнозирования риска невыполнения государственных контрактов; экспертные оценки, для учета контекстуальных факторов и особенностей, их влияния на важность признаков. Основными выводами проведенного исследования являются представленные методики оценки важности признаков при анализе выполнения государственных контрактов, путем использования данных из различных источников, включая реестр государственных закупок единой информационной системы (ЕИС), реестр недобросовестных поставщиков (РНП) ЕИС и информационную систему СПАРК. Авторам удалось достичь высокой точности предсказаний (более 97%) и осуществить анализ наиболее важных и значимых признаков. Научная новизна заключается в том, что полученные результаты позволяют выявить и проанализировать факторы из трех информационных систем, оказывающие влияние на риски невыполнения государственных контрактов. Таким образом, данное исследование является ценным и важным в своей области, что способствует разработке более эффективных методов управления рисками и повышению эффективности реализации государственных контрактов. Полученные результаты позволяют выделить факторы, оказывающие наибольшее влияние на риски невыполнения контрактов, что делает исследование ценным и важным в данной области.

Об авторах

Петр Владимирович Никитин

Финансовый университет при Правительстве Российской Федерации

Email: pvnikitin@fa.ru
ORCID iD: 0000-0001-8866-5610
доцент; кафедра Департамент анализа данных и машинного обучения;

Виталий Игоревич Долгов

Финансовый университет при Правительстве Российской Федерации

Email: vidolgov@fa.ru
доцент; кафедра Департамент анализа данных и машинного обучения;

Римма Ивановна Горохова

Финансовый университет при Правительстве Российской Федерации

Email: rigorokhova@fa.ru
доцент; кафедра департамент анализа данных и машинного обучения;

Дмитрий Игоревич Коровин

Финансовый университет при Правительстве Российской Федерации

Email: dikorovin@fa.ru
профессор; кафедра Департамент анализа данных и машинного обучения;

Елена Юрьевна Бахтина

Московский автомобильно-дорожный государственный технический университет (МАДИ)

Email: elbakh@gmail.com
доцент; кафедра Общетеоретические дисциплины;Доцент;

Список литературы

  1. Алейникова М. Ю., Голованов Д. А. Модели совершенствования системы внутреннего контроля осуществления государственных закупок в Российской Федерации // Управленческий учет. 2022. №. 7. С. 12-19. doi: 10.25806/uu7202212-19.
  2. Золотухина М. М., Половникова Н.А. Риски при выборе поставщиков и заключении контрактов // Экономика и бизнес: теория и практика. 2023. №. 8 (102). С. 86-90.
  3. Гендлина Ю. Б. и др. Риски строительных контрактов, заключенных с муниципальным заказчиком // Управление и экономика народного хозяйства России. 2022. С. 113-120.
  4. Немцева Ю. В., Миронец О. Б. Управление рисками компаний отрасли информационных технологий на рынке b2g // Управленческий учет. 2022. №. 12. С. 100-109.
  5. Корчагин С.А., Догадина Е.П., Мелентьев В.В., Никитин П.В., Сердечный Д.В. Система поддержки принятия решений по выдаче банковских гарантий на основе прогнозирования исполнения контрактов с использованием методов машинного обучения и технологий парсинга // Современные наукоемкие технологии. 2023. № 7. С. 41-47.
  6. Геллер А. Я. Анализ причин расторжения контрактов в системе государственных и муниципальных закупок Российской Федерации // Вестник университета. 2022. №. 5. С. 5-12.
  7. Лавлинский С. М., Панин А. А., Плясунов А. В. Модель формирования экономической политики с учётом трансакционных издержек и страхования рисков разрыва контрактов // Дискретный анализ и исследование операций. 2022. Т. 29. №. 3. С. 45-63. doi: 10.33048/daio.2022.29.738.
  8. Созаева Д. А., Гончар К. В. Исследование рисков расторжения контрактов, заключенных по результатам госзакупок // Проблемы анализа риска. 2022. Т. 19. №. 3. С. 74-85.
  9. Черняев Е. В., Хайтбаев В. А. Вероятностные методы оценки рисков в системе программно-целевого планирования государственного оборонного заказа с применением иерархических моделей // Прикладные экономические исследования. 2022. №. 3. С. 24-29.
  10. Muhammed A. O. et al. Assessment of factors affecting contractors tendering success for construction projects in North-Central Nigeria //International Journal of Real Estate Studies, 2022. Т. 16. №. 1. P. 87-99, doi: https://doi.org/10.11113/intrest.v16n1.155
  11. Lu S., Wang H. How political connections exploit loopholes in procurement institutions for government contracts: Evidence from China // Governance, 2022, doi: doi: 10.1080/14719037.2013.770056
  12. Hamza S. A., Rasheed S., Hussein A. Procurement challenges analysis of Iraqi construction projects // Journal of the Mechanical Behavior of Materials, 2022. Т. 31. №. 1. P. 112-117. doi: 10.1515/jmbm-2022-0012
  13. Duguay R., Rauter T., Samuels D. The impact of open data on public procurement // Journal of Accounting Research, 2023. Т. 61. №. 4. P. 1159-1224.
  14. Nani D. A., Ali S. Determinants of Effective E-Procurement System: Empirical Evidence from Indonesian Local Governments // Jurnal Dinamika Akuntansi Dan Bisnis, 2020. Т. 7. №. 1. P. 33-50. doi: 10.24815/jdab.v7i1.15671
  15. Lundberg, S. M., & Lee S. I. A unified approach to interpreting model predictions // Advances in neural information processing systems, 2017. P. 30, doi: 10.48550/arXiv.1705.07874.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).