Analytic Detection in Homotopy Groups of Smooth Manifolds
- 作者: Zubov I.S.1
-
隶属关系:
- State Socio-Humanitarian University
- 期: 卷 66, 编号 4 (2020): Algebra, Geometry, and Topology
- 页面: 544-557
- 栏目: Articles
- URL: https://bakhtiniada.ru/2413-3639/article/view/327747
- DOI: https://doi.org/10.22363/2413-3639-2020-66-4-544-557
- ID: 327747
如何引用文章
全文:
详细
In this paper, for the mapping of a sphere into a compact orientable manifold , we solve the problem of determining whether it represents a nontrivial element in the homotopy group of the manifold πn(M ). For this purpose, we consistently use the theory of iterated integrals developed by K.-T. Chen. It should be noted that the iterated integrals as repeated integration were previously meaningfully used by Lappo-Danilevsky to represent solutions of systems of linear differential equations and by Whitehead for the analytical description of the Hopf invariant for mappings . We give a brief description of Chen’s theory, representing Whitehead’s and Haefliger’s formulas for the Hopf invariant and generalized Hopf invariant. Examples of calculating these invariants using the technique of iterated integrals are given. Further, it is shown how one can detect any element of the fundamental group of a Riemann surface using iterated integrals of holomorphic forms. This required to prove that the intersection of the terms of the lower central series of the fundamental group of a Riemann surface is a unit group.
作者简介
I. Zubov
State Socio-Humanitarian University
编辑信件的主要联系方式.
Email: reestr_rr@mail.ru
Kolomna, Russia
参考
- Дубровин Б. А. Уравнение Кадомцева-Петвиашвили и соотношения между периодами голоморфных дифференциалов на римановых поверхностях// Изв. АН СССР. Сер. мат. - 1981. - 45, № 5. - С. 1015- 1028.
- Лаппо-Данилевский И. А. Применение функций от матриц к теории линейных систем обыкновенных дифференциальных уравнений. - М.: Изд-во ГИТТЛ, 1957.
- Лексин В. А. Метод Лаппо-Данилевского и тривиальность пересечения радикалов членов нижнего центрального ряда некоторых фундаментальных групп// Мат. заметки. - 2006. - 79, № 4. - С. 577- 580.
- Новиков С. П. Аналитический обобщенный инвариант Хопфа. Многозначные функционалы// Усп. мат. наук. - 1984. - 39, № 5. - С. 97-106.
- Хатчер A. Алгебраическая топология. - М.: МЦНМО, 2011.
- Хейн Р. М. Итерированные интегралы и проблема гомотопических периодов. - М.: Наука, 1988.
- Chen K.-T. Algebras of iterated path integrals and fundamental groups// Trans. Am. Math. Soc. - 1971. - 156. - С. 359-379.
- Chen K.-T. Iterated integrals of differential forms and loop space homology// Ann. of Math. (2). - 1973. - 97. - С. 217-246.
- Chen K.-T. Iterated path integrals// Bull. Am. Math. Soc. - 1977. - 83, № 5. - С. 831-879.
- Haefliger A. Whitehead products and differential forms// В сб.: «Differential Topology, Foliations and Gelfand-Fuks Cohomology». - Berlin-Heidelberg: Springer, 1978. - С. 13-24.
- Hain R. M. On a generalization of Hilbert’s 21st problem// Ann. Sci. E´ c. Norm. Supe´r. (4).- 1986.- 19, № 4. - С. 609-627.
- Manin Yu. I. Non-commutative generalized Dedekind symbols// Pure Appl. Math. Q. - 2014. - 10,№ 1. - С. 245-258.
- Marin I. Residual nilpotence for generalizations of pure braid groups// arXiv:1111.5601 [math.GR]. - 2011.
- Whitehead J. H. C. An expression of Hopf’s invariant as an integral// Proc. Natl. Acad. Sci. USA. - 1947. - 33, № 5. - С. 117-123.
- Zubov I. S. Analytic detection of non-trivial elements in fundamental groups of Riemann surfaces// J. Phys. Conf. Ser. - 2019. - 1203. - 012099.
补充文件

