从实际测量和数字面部图像中获取面部度量特征的技术操作者依赖性

封面

如何引用文章

全文:

详细

论证。科学文献中没有研究证实,与数字图像测量相比,对受试者面部参数的人工测量方法在人像照片鉴定方面具有操作者依赖性。这些方法的劳动强度和测量准确度也尚未确定。

该研究的目的是确定人脸实际测量技术和数字图像测量技术的操作者依赖性。

材料与方法。四名研究人员分别用仪器测量了24名19-20岁高加索女性的面部参数。这些女孩就读于以V.F.Voyno-Yasenetsky教授命名的克拉斯诺亚尔斯克国立医科大 学(Krasnoyarsk State Medical University,KrasSMU)。对每位受试者面部的五个投影进行了同类型的标准数字摄影,然后对实际测量结果与数字测量结果进行比较。

结果。在比较通过数字图像或人工方法获得的面部测量结果时,发现了测量误差。当一名研究人员用两种不同的方法测量一个特定参数时,其他研究人员的测量结果都非常好,因此就会出现这些误差。在研究中,人工方法的偏差最大。这可能是由于测量结果与操作者有关。

结论。由于没有操作者依赖性,在有条不紊态度的条件下,与实际测量相比,使用数字面部图像的测量方法更准确,其劳动强度也更低。这可被用于犯罪侦查实践。

作者简介

Alexandra A. Yusupova

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University

Email: aleksandra-yusup@mail.ru
ORCID iD: 0009-0000-8687-4312
SPIN 代码: 4651-5075
俄罗斯联邦, Krasnoyarsk

Fedor V. Alyabyev

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University

Email: alfedval@mail.ru
ORCID iD: 0000-0003-4438-1717
SPIN 代码: 2995-4963

MD, Dr. Sci. (Med.), Professor

俄罗斯联邦, Krasnoyarsk

Ekaterina V. Tsiupko

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University

Email: tsiupkoev@mail.ru
ORCID iD: 0000-0002-5283-255X
SPIN 代码: 9334-6471
俄罗斯联邦, Krasnoyarsk

Alina P. Dyagileva

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University

Email: alya.krasnova.598@mail.ru
ORCID iD: 0000-0002-8141-3055
SPIN 代码: 9182-7870
俄罗斯联邦, Krasnoyarsk

Kristina V. Sukhareva

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University

Email: kristina.sukhareva.98@mail.ru
ORCID iD: 0009-0007-2176-2257
SPIN 代码: 4444-2200
俄罗斯联邦, Krasnoyarsk

Nazariy P. Chesalov

Tomsk National Research Medical Center, Russian Academy of Science

Email: nazary.chesalov@gmail.com
ORCID iD: 0000-0003-4060-9470
SPIN 代码: 8124-9991
俄罗斯联邦, Tomsk

Galina A. Vashchenko

Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University

编辑信件的主要联系方式.
Email: galina.555.v@mail.ru
ORCID iD: 0009-0002-2224-3241
SPIN 代码: 5852-6474
俄罗斯联邦, Krasnoyarsk

参考

  1. Mazur ES, Ivanova EV. The possibility of using traditional methods of identification in criminology. In: All-Russian Scientific and Practical Conference “Legal problems of strengthening Russian statehood”: Proceedings of the conference, Tomsk, January 28–30. 2016;(70):183–185. (In Russ).
  2. Narina NV. Experience of cranio-facial comparison in forensic identification of a person. [2014 Oct 24]. (In Russ). Available from: https://www.slideserve.com/rodd/5809286. Accessed: 15.10.2023.
  3. Blagov VO, Mityushin DA, Puchkov GYu, Remizova EV. The main directions of creating an information system for personal identification based on phenotypic signs of a person. RGGU bulletin. Series: Information science. Information security. Mathematics. 2021;(2):37–48. (In Russ). doi: 10.28995/2686-679X-2021-2-37-47
  4. Dmitrieva LV. The possibility of using biometric identification in the production of forensic portrait examination. Entsiklopediya sudebnoi ekspertizy. 2018;(4):84–89. (In Russ).
  5. Dmitrieva LV. The role of biometric identification of a person in the production of certain types of forensic examinations. In: Modern criminalistics: Problems of theory, practice, training. Collection of articles based on the materials of the international scientific and practical conference, Novosibirsk, March 24, 2017. Novosibirsk: Novosibirsk State Technical University; 2017. Р. 58–60. (In Russ).
  6. Zinin AM. Human identification and anthropometric identification: Correlation between concepts. Theory and Practice of Forensic Science. 2019;14(1):66–69. (In Russ). doi: 10.30764/1819-2785-2019-14-1-66-69
  7. Hang D, Hailin S, Zeng D, Zhang XP. The elements of end-to-end deep face recognition: A survey of recent advances. ACM Computing Surveys. 2022;(54). doi: 10.1145/3507902
  8. Saadeh M, Fayyad-Kazan H, Ramzi H, Fouad A. Facial soft tissue thickness differences among different vertical facial patterns. Forensic Sci Int. 2020;317:110468. doi: 10.1016/j.forsciint.2020.110468
  9. Sevastyanova VS, Kosuhina OI. Craniofacial identification as a method of determining personality in forensic medical examination. In: Topical issues of forensic medicine and expert practice, 2022: Materials of the International Congress. Ed. by V.A. Klevno. Moscow; 2022. Р. 158–159. (In Russ).
  10. Tuhtasinov MT. Preliminary image processing in biometric identification of a person by a face image. In: Informatics: Problems, methodology, technologies: Collection of materials of the XVIII International Scientific and Methodological Conference, Voronezh, February 08–09, 2018. Ed. by N.A. Tyukachev. Vol. 4. Voronezh; 2018. Р. 215–220. (In Russ).
  11. Spevakov AG. Modern methods of identification of a person by morphological signs. In: Science and education in the XXI century: A collection of scientific papers based on the materials of the International Correspondence scientific and practical conference, Tambov, May 31, 2012. Part 2. Tambov; 2012. Р. 140–142. (In Russ).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2023

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».