Pre-treatment of granular osteoplastic material for improving the reparative regeneration of jaw bone defects
- Authors: Malchikova D.V.1
-
Affiliations:
- Samara State Medical University
- Issue: Vol 23, No 4 (2023)
- Pages: 59-65
- Section: DENTISTRY
- URL: https://bakhtiniada.ru/2410-3764/article/view/217898
- DOI: https://doi.org/10.55531/2072-2354.2023.23.4.59-65
- ID: 217898
Cite item
Full Text
Abstract
Aim – to develop a method for preliminary preparation of a granular osteoplastic material (GOM) for improving the quality of reparative osteogenesis of jaw bone defects that can be used in clinical setting.
Material and methods. The in vitro study was performed using 9 samples (3 samples in each study group). Group 1 included intact samples of grafting material Cerabone (Botiss biomaterials GmbH, Germany). In group 2, the samples of Cerabone (Botiss biomaterials GmbH, Germany) were subject to degassing and dust extraction in two stages using the original method developed by the author. In group 3, a culture of mesenchymal-stromal cells (MSC) obtained from the human umbilical cord was used as a control. The developed method was assessed for cytotoxicity using human MSC. The proliferative index and cell doubling time were registered. A topographic analysis of the sample surface was performed using scanning electron microscopy. To assess the rate of degassing, the experiment included three replicates. The fluid volume was recorded every 2.5 minute. For statistical data processing, we used SPSS 25.0 software (IBM Corporation, Armonk, New York, USA).
Results. In Group 2, that included the samples of GOM fractions with the preliminary degassing and dust extraction, we revealed a decreased content of coarse and fine fraction dust on the outer and inner surfaces of the pores and mouths of interpore channels and voids in all samples. The granular osteoplastic material prepared for the use by the method of degassing and dust extraction proved to have no toxic effect on the growth and viability of human mesenchymal-stromal cells.
Conclusion. A preliminary preparation of GOM by the method of degassing and dust extraction developed by the author in clinical conditions ex tempore significantly optimizes the adsorption and drainage properties of the GOM fraction.
Full Text
##article.viewOnOriginalSite##About the authors
D. V. Malchikova
Samara State Medical University
Author for correspondence.
Email: dvmalchikova@gmail.com
ORCID iD: 0000-0001-9077-2888
a postgraduate student of the Department of Maxillofacial Surgery and Dentistry
Russian Federation, SamaraReferences
- Miron R, Hedbom E, Saulacic N, et al. Osteogenic potential of autogenous bone grafts harvested with four different surgical techniques. J Dent Res. 2011;90:1428-33. doi: 10.1177/0022034511422718
- Shalash M, Rahman H, Azim A, et al. Evaluation of horizontal ridge augmentation using beta tricalcium phosphate and demineralized bone matrix: a comparative study. J Clin Exp Dent. 2013;5(5):e253-9. doi: 10.4317/jced.51244
- Grabowski G, Cornett C. Bone graft and bone graft substitutes in spine surgery: current concepts and controversies. J Am Acad Orthop Surg. 2013;21:51-60. doi: 10.5435/JAAOS-21-01-51
- Nkenke E, Stelzle F. Clinical outcomes of sinus floor augmentation for implant placement using autogenous bone or bone substitutes: a systematic review. Clin Oral Implants Res. 2009;20:124-33. doi: 10.1111/j.1600-0501.2009.01776.x
- Tsiourvas D, Sapalidis A, Papadopoulos T. Hydroxyapatite/chitosan-based porous three-dimensional scaffolds with complex geometries. Mater Today Commun. 2016;7:59-66. doi: 10.3390/molecules25204785
- Wang R, Lang N. Ridge preservation after tooth extraction. Clin Oral Implants Res. 2012;23:147-56. doi: 10.1111/j.1600-0501.2012.02560.x
- Bing W, Chengmin F, Yiming L, et al. Recent advances in biofunctional guided bone regeneration materials for repairing defective alveolar and maxillofacial bone: A review. Japanese Dental Science Review. 2022;58:233-248. doi: 10.1016/j.jdsr.2022.07.002
- Lee S, Choi B, Li J, et al. Comparison of corticocancellous block and particulate bone grafts in maxillary sinus floor augmentation for bone healing around dental implants. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;104(3):324-8. doi: 10.1016/j.tripleo.2006.12.020
- Mohd A, Buenzli P. Modeling the Effect of Curvature on the Collective Behavior of Cells Growing New Tissue. Biophysical Journal. 2017;112:193-204. doi: 10.1016/j.bpj.2016.11.3203
- Mour М, Das D, Winkleret T, et al. Advances in Porous Biomaterials for Dental and Orthopaedic Applications. Materials. 2010;3:2947-2974. doi: 10.3390/ma3052947
- Hegarty-Cremer S, Simpson M, Andersen T, et al. Modelling cell guidance and curvature control in evolving biological tissues. J Theor Biol. 2021;520:110658. doi: 10.1016/j.jtbi.2021.110658
- Slesarev OV, Bairicov IM, Malchikova DV, et al. Method for degassing granular osteoconductive osteoplastic material. Patent RUS №2758570 C1/29.10.2021. (In Russ.). [Слесарев О.В., Байриков И.М., Мальчикова Д.В., и др. Способ дегазации гранулированного остеокондуктивного костнопластического материала. Патент РФ на изобретение №2758570 C1/ 29.10.2021]. Available at: https://patenton.ru/patent/RU2758570C1
- Shetty B, Dinesh A, Seshan H. Comparitive effects of tetracyclines and citric acid on dentin root surface of periodontally involved human teeth: A scanning electron microscope study. J Indian Soc Periodontol. 2008;12(1):8-15. doi: 10.4103/0972-124X.44090
- Klein M, Kämmerer P, Götz H, et al. Long-term bony integration and resorption kinetics of a xenogeneic bone substitute after sinus floor augmentation: histomorphometric analyses of human biopsy specimens. Int J Periodontics Restorative Dent. 2013;33:101-110. doi: 10.11607/prd.1469
- Dau M, Kämmerer P, Henkel K, et al. Bone formation in mono cortical mandibular critical size defects after augmentation with two synthetic nanostructured and one xenogenous hydroxyapatite bone substitute - in vivo animal study. Clin Oral Implants Res. 2016;27:597-603. doi: 10.1111/clr.12628
- Yamada M, Egusa H. Current bone substitutes for implant dentistry. J Prosthodont Res. 2018;62:152-161. doi: 10.1016/j.jpor.2017.08.010
- Kusrini E, Sontang M. Characterization of x-ray diffraction and electron spin resonance: effects of sintering time and temperature on bovine hydroxyapatite. Radiat Phys Chem. 2012;81:118-125. doi: 10.1016/j.radphyschem.2011.10.006
- Riachi F, Naaman N, Tabarani C, et al. Influence of material properties on rate of resorption of two bone graft materials after sinus lift using radiographic assessment. Int J Dentis. 2012:737262. doi: 10.1155/2012/737262
- Kyyak S, Blatt S, Schiegnitz E, et al. Activation of human osteoblasts via different bovine bone substitute materials with and without injectable platelet rich fibrin in vitro. Front Bioeng Biotechnol. 2021;9:71. doi: 10.3389/fbioe.2021.599224
- Rajkovski B, Jaunich M, Beuer F, et al. Hydrophilicity, Viscoelastic, and Physicochemical Properties Variations in Dental Bone Grafting Substitutes. Materials. 2018;11:215. doi: 10.3390/ma11020215
- Bertazzo S, Zambuzzi W, Campos D, et al. Hydroxyapatite surface solubility and effect on cell adhesion. Colloids Surf B Biointerfaces. 2010;78(2):177-84. doi: 10.1016/j.colsurfb.2010.02.027
- Cyster L, Grant D, Howdle S, et al. The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering. Biomaterials. 2005;26(7):697-702. doi: 10.1016/j.biomaterials.2004.03.017
- Zambuzzi W, Oliveira R, Pereira F, et al. Rat subcutaneous tissue response to macrogranular porous anorganic bovine bone graft. Braz Dent J. 2006;17(4):274-8. doi: 10.1590/s0103-64402006000400002
- Salerno A, Guarnieri D, Iannone M, et al. Effect of micro- and macroporosity of bone tissue three-dimensional-poly(epsilon-caprolactone) scaffold on human mesenchymal stem cells invasion, proliferation, and differentiation in vitro. Tissue Eng Part A. 2010;16(8):2661-73. doi: 10.1089/ten.tea.2009.0494
- Turco G, Porrelli D, Marsich E, et al. Three-Dimensional Bone Substitutes for Oral and Maxillofacial Surgery: Biological and Structural Characterization. J Funct Biomater. 2018;9(4). doi: 10.3390/jfb9040062
- Tian T, Zhang T, Lin Y, et al. Cai. Vascularization in Craniofacial Bone Tissue Engineering. Journal of Dental Research. 2018;97(9): 969-976. doi: 10.1177/0022034518767120
- Helder M, Bravenboer N, BruGOMenkate C, et al. Bone Tissue Regeneration in the Oral and Maxillofacial Region: A Review on the Application of Stem Cells and New Strategies to Improve Vascularization. Hindawi. Stem Cells International. 2019;6279721:15. doi: 10.1155/2019/6279721
- Fernandez G, Keller L, Idoux-Gillet Y, et al. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. Journal of Tissue Engineering. 2018;9:18. doi: 10.1177/2041731418776819
- Hu Y, Jiang R, Li X, et al. Effect of Ultrasonic-Assisted Casting on the Hydrogen and Lithium Content of Al-Li Alloy. Materials. 2022;15(3):1081. doi: 10.3390/ma15031081
Supplementary files
