Водяной орех: перспективы использования в медицинской и фармацевтической практике
- Авторы: Михайлова Е.В.1, Попов С.С.1, Бредихина Т.А.1
-
Учреждения:
- ФГБОУ ВО «Воронежский государственный медицинский университет имени Н.Н. Бурденко» Минздрава России
- Выпуск: Том 25, № 3 (2025)
- Страницы: 65-73
- Раздел: ФАРМАЦЕВТИЧЕСКАЯ ХИМИЯ, ФАРМАКОГНОЗИЯ
- URL: https://bakhtiniada.ru/2410-3764/article/view/315117
- DOI: https://doi.org/10.35693/AVP681674
- ID: 315117
Цитировать
Полный текст
Аннотация
В данном обзоре проанализированы данные 43 отечественных и зарубежных источников литературы, посвященных анализу возможностей использования Trapa natans, а также его подвидов в медицине и фармации. Все источники размещены в открытой базе данных eLibrary и PubMed.
Представители рода Trapa (рогульник, водяной орех, водяной кальтроп, чертов орех, чилим) – реликтовые однолетние водные растения семейства Lythraceae (Дербенниковые). Данное растение введено в культуру в разных странах мира и с древних времен используется в пищевых целях. Перспективно применение рогульника в фитотерапии. Анализ литературных данных показал возможность медицинского применения таких частей растения, как листья, корни, ядра плодов, но особенно большое значение придается кожуре плодов рогульника. Водяной орех проявляет различные виды фармакологической активности, такие как антиоксидантное, гепатопротекторное, противовоспалительное, противораковое, противогрибковое, антибактериальное действие. Значительное количество исследований доказывает гипогликемическую активность различных частей растения и возможность использования как пищевой добавки для естественной терапии гипергликемии или лекарственного средства при сахарном диабете. С помощью снижения уровня конечных продуктов гликирования при применении экстракта оболочек плодов водяного ореха показана перспективность растения в лечении бесплодия. Продемонстрирован антимикробный потенциал водяного ореха против синегнойной палочки, метициллинрезистентного золотистого стафилококка, патогенных видов грибов рода Candida, что подтверждает возможность применения этого растения против микробных инфекций. Антипролиферативный эффект растения ряд исследователей связывает с фенольными соединениями. Показана эффективность экстрактов и выделенных групп веществ из различных частей рогульника против рака толстой кишки, опухоли молочной железы, раковой опухоли шейки матки, гепатоцеллюлярной карциномы человека, аденокарциномы желудка, глиомы.
Настоящий обзор поможет оценить перспективность дальнейшего изучения представителей рода Trapa в качестве источника ценных биологически активных веществ и его терапевтический потенциал.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Елена Владимировна Михайлова
ФГБОУ ВО «Воронежский государственный медицинский университет имени Н.Н. Бурденко» Минздрава России
Автор, ответственный за переписку.
Email: milenok2007@mail.ru
ORCID iD: 0000-0002-1862-065X
канд. биол. наук, доцент кафедры организации фармацевтического дела, клинической фармации и фармакогнозии
Россия, ВоронежС. С. Попов
ФГБОУ ВО «Воронежский государственный медицинский университет имени Н.Н. Бурденко» Минздрава России
Email: popov-endo@mail.ru
ORCID iD: 0000-0002-4438-9201
д-р мед. наук, доцент, заведующий кафедрой организации фармацевтического дела, клинической фармации и фармакогнозии
Россия, ВоронежТ. А. Бредихина
ФГБОУ ВО «Воронежский государственный медицинский университет имени Н.Н. Бурденко» Минздрава России
Email: bredichina-tat@yandex.ru
ORCID iD: 0000-0003-2300-0313
канд. фарм. наук, доцент кафедры организации фармацевтического дела, клинической фармации и фармакогнозии
Россия, ВоронежСписок литературы
- Chupina IS, Silant’eva MM, Kurepina NYu. Distribution of Trapa natans L. S.L. (Lythraceae) in Altai krai: historical data and new locations. Flora and Vegetation of Asian Russia. 2021;14(2):151-161. [Чупина И.С., Силантьева М.М., Курепина Н.Ю. О распространении Trapa natans L. S.L. (Lythraceae) в Алтайском крае: исторические данные и новые местонахождения. Растительный мир Азиатской России. 2021;14(2):151-161]. doi: 10.15372/RMAR20210205
- Arbuzova GA, Gorbunova AI, Chepinoga VV. The water chestnut (Trapa natans L., Lythraceae) in Irkutsk region. BSU bulletin. Biology, geography. 2019;1:29-36. [Арбузова Г.А., Горбунова А.И., Чепинога В.В. Рогульник плавающий (Trapa natans L., Lythraceae) в Иркутской области. Вестник Бурятского государственного университета. Биология, география. 2019;1:29-36]. doi: 10.18101/2587-7143-2019-1-29-36
- Lu H, Zuo Y, Meng X, et al. Phenolic profiles, antioxidant activity and inhibition of digestive enzymes of water caltrop pericarps. J Sci Food Agric. 2022;102(6):2342-2351. doi: 10.1002/jsfa.11572
- Wang CC, Chen HF, Wu JY, et al. Stability of Principal Hydrolysable Tannins from Trapa taiwanensis Hulls. Molecules. 2019;24(2):365. doi: 10.3390/molecules24020365
- Yasuda M, Yasutake K, Hino M, et al. Inhibitory effects of polyphenols from water chestnut (Trapa japonica) husk on glycolytic enzymes and postprandial blood glucose elevation in mice. Food Chem. 2014;165:42-49. doi: 10.1016/j.foodchem.2014.05.083
- Banu WZ, Dasgupta D, Hazarika I, et al. Trapa natans L.: A Journey from Traditional to Contemporary Therapies – A Review. The Natural Products Journal. 2023;13(8):e300323215263. doi: 10.2174/2210315513666230330182909
- Mikhailova EV, Artyukhin AE, Zul’karnaeva ESh, et al. Water chestnut – the plant of the future. In: Fiziologiya rastenii – osnova sozdaniya rastenii budushchego. Kazan, 2019:292. (In Russ.). [Михайлова Е.В., Артюхин А.Е., Зулькарнаева Е.Ш., и др. Водяной орех – растение будущего. В кн.: Физиология растений – основа создания растений будущего. Казань, 2019:292]. doi: 10.26907/978-5-00130-204-9-2019-292
- Chupina IS, Silant’eva MM. Fruits polymorphism of European water chestnut populations in the Altai Krai. Acta Biologica Sibirica. 2019;5(4):66-72. [Чупина И.С., Силантьева М.М. Полиморфизм плодов популяций Trapa natans L. на территории Алтайского края. Acta Biologica Sibirica. 2019;5(4): 66-72]. doi: 10.14258/abs.v5.i4.7058
- Kuluev BR, Artyukhin AE, Shevchenko AM, et al. Water chestnut Trapa L.: biology, habitat and the study of its isolated populations in the lakes of Nurimanovsky district in the Republic of Bashkortostan. Biomics. 2017;9(2):101-118. (In Russ.). [Кулуев Б.Р., Артюхин А.Е., Шевченко А.М., и др. Водяной орех плавающий Trapa L.: биология, ареал распространения и исследование его изолированных популяций в озерах Нуримановского района Республики Башкортостан. Биомика. 2017;9(2):101-118].
- Alfasane MA, Moniruzzaman K, Rahman MM. Biochemical composition of the fruits of water chestnut (Trapa bispinosa Roxb.). Dhaka University Journal of Biological Sciences. 2011;20(1):95-98. doi: 10.3329/dujbs.v20i1.8879
- Radojevic ID, Vasic SM, Dekic MS, et al. Antimicrobial and antibiofilm effects of extracts from Trapa natans L., evaluation of total phenolic and flavonoid contents and GC-MS analysis. Acta Pol Pharm. 2016;73(6):1565-1574. PMID: 29634111
- Aleksic I, Ristivojevic P, Pavic A, et al. Anti-quorum sensing activity, toxicity in zebrafish (Danio rerio) embryos and phytochemical characterization of Trapa natans leaf extracts. J Ethnopharmacol. 2018;222:148-158. doi: 10.1016/j.jep.2018.05.005
- Kharbanda C, Sarwar Alam M, Hamid H, et al. Trapa natans L. root extract suppresses hyperglycemic and hepatotoxic effects in STZ-induced diabetic rat model. J Ethnopharmacol. 2014; 151(2): 931-936. doi: 10.1016/j.jep.2013.12.007
- Raza A, Li F, Xu X, et al. Optimization of ultrasonic-assisted extraction of antioxidant polysaccharides from the stem of Trapa quadrispinosa using response surface methodology. Int J Biol Macromol. 2017;94(Pt A):335-344. doi: 10.1016/j.ijbiomac.2016.10.033
- Li F, Mao YD, Wang YF, et al. Optimization of Ultrasonic-Assisted Enzymatic Extraction Conditions for Improving Total Phenolic Content, Antioxidant and Antitumor Activities In Vitro from Trapa quadrispinosa Roxb. Residues. Molecules. 2017;22(3):396. doi: 10.3390/molecules22030396
- Gani A, Rasool N, Shah A, et al. DNA scission inhibition, antioxidant, and antiproliferative activities of water chestnut (Trapa natans) extracted in different solvents. CyTA – Journal of Food. 2015;13(3):415-419. doi: 10.1080/19476337.2014.992967
- Hussain T, Gehad MS, Firdous H. Hepatoprotective Evaluation of Trapa natans against Drug-induced Hepatotoxicity of Antitubercular Agents in Rats. Pharmacognosy Magazine. 2018;14(54):180-185. doi: 10.4103/pm.pm_237_17
- Lu Han, Jian Tun-yu, Ding Xiao-qin, et al. Trapa natans pericarp extract ameliorates hyperglycemia and hyperlipidemia in type 2 diabetic mice. Revista Brasileira de Farmacognosia. 2019;29(5):631-636. doi: 10.1016/j.bjp.2019.04.011
- Lu Han , Meng Xiuhua, Ding Xiaoqin, et al. Gallotannin, Isolated from Pericarp of Water Caltrop Ameliorates High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease in Mice. J Agric Food Chem. 2023;71(18):7046-7057. doi: 10.1021/acs.jafc.3c01099
- Wang L, Yin D, Fan Y, et al. Molecular mechanism of the anti-gastric cancer activity of 1,2,3,6-tetra-O-galloyl-β-D-glucose isolated from Trapa bispinosa Roxb. shell in vitro. PLoS One. 2022;17(6):e0269013. doi: 10.1371/journal.pone.0269013
- Yasuda M, Ikeoka M, Kondo S-I. Skin-related enzyme inhibitory activity by hydrolyzable polyphenols in water chestnut (Trapa natans) husk. Biosci Biotechnol Biochem. 2021;85(3):666-674. doi: 10.1093/bbb/zbaa076
- Malviya N, Jain S, Jain A, et al. Evaluation of in vitro antioxidant potential of aqueous extract of Trapa natans L. fruits. Acta Pol Pharm. 2010;67(4):391-396. PMID: 20635535.
- Sun X, Lei Q, Chen Q, et al. Biphasic Fermentation of Trapa bispinosa Shells by Ganoderma sinense and Characterization of Its Polysaccharides and Alcoholic Extract and Analysis of Their Bioactivity. Molecules. 2024;29(6):1238. doi: 10.3390/molecules29061238
- Jinno M, Nagai R, Takeuchi M, et al. Trapa bispinosa Roxb. extract lowers advanced glycation end-products and increases live births in older patients with assisted reproductive technology: a randomized controlled trial. Reprod Biol Endocrinol. 2021;19(1):149. doi: 10.1186/s12958-021-00832-y
- Chang YW, Huang WC, Lin CY, et al. Tellimagrandin II, A Type of Plant Polyphenol Extracted from Trapa bispinosa Inhibits Antibiotic Resistance of Drug-Resistant Staphylococcus aureus. Int J Mol Sci. 2019;20(22):5790. doi: 10.3390/ijms20225790
- Kuluev BR, Zulkarnaeva ESh, Artyukhin AE, et al. Antibacterial activity of alcohol extract of the water caltrop endocarps. Ecobiotech. 2018;1(1):45-51. [Кулуев Б.Р., Зулькарнаева Е.Ш., Артюхин А.Е., и др. Антибактериальная активность спиртового экстракта эндокарпиев водяного ореха Trapa sibirica Fler. Экобиотех.2018;1(1):45-51]. doi: 10.31163/2618-964X-2018-1-1-45-51
- Wang SH, Kao MY, Wu SC, et al. Oral administration of Trapa taiwanensis Nakai fruit skin extracts conferring hepatoprotection from CCl4-caused injury. J Agric Food Chem. 2011;59(8):3686-3692. doi: 10.1021/jf1048386
- Mondal M, Bhattacharya S, Biswas M. Hepatoprotective activity of Trapa natans fruit peel extracts against paracetamol-induced liver damage in rats. Elixir Pharmacy. 2013;60:16461-16463.
- Iwaoka Y, Suzuki S, Kato N, et al. Characterization and Identification of Bioactive Polyphenols in the Trapa bispinosa Roxb. Pericarp Extract. Molecules. 2021;26(19):5802. doi: 10.3390/molecules26195802
- Hui-Chi Huang, Chien-Liang Chao, Chia-Ching Liaw, et al. Hypoglycemic Constituents Isolated from Trapa natans L. Pericarps. J Agric Food Chem. 2016;64(19):3794-3803. doi: 10.1021/acs.jafc.6b01208
- Ahmad N, Sharma AK, Sharma S, et al. Biosynthesized composites of Au-Ag nanoparticles using Trapa peel extract induced ROS-mediated p53 independent apoptosis in cancer cells. Drug and Chemical Toxicology. 2019;1:43-53. doi: 10.1080/01480545.2018.1463241
- Mandal SM, Migliolo L, Franco OL, et al. Identification of an antifungal peptide from Trapa natans fruits with inhibitory effects on Candida tropicalis biofilm formation. Peptides. 2011;32(8):1741-1747. doi: 10.1016/j.peptides.2011.06.020
- Kim YS, Hwang JW, Han YK, et al. Antioxidant activity and protective effects of Trapa japonica pericarp extracts against tert-butylhydroperoxide-induced oxidative damage in Chang cells. Food Chem Toxicol. 2014;64:49-56. doi: 10.1016/j.fct.2013.11.018
- Singh S, Kumar V, Kumar N, et al. Protective and Modulatory Effects of Trapa bispinosa and Trigonella foenum-graecum on Neuroblastoma Cells Through Neuronal Nitric Oxide Synthase. Assay Drug Dev Technol. 2020;18(1):64-74. doi: 10.1089/adt.2018.912
- Ishida H, Shibata T, Shibata S, et al. Lutein plus Water Chestnut (Trapa bispinosa Roxb.) Extract Inhibits the Development of Cataracts and Induces Antioxidant Gene Expression in Lens Epithelial Cells. Biomed Res Int. 2020;2020:9204620. doi: 10.1155/2020/9204620
- Ambikar DB, Harle UN, Khandare RA, et al. Neuroprotective effect of hydroalcoholic extract of dried fruits of Trapa bispinosa Roxb. on lipofuscinogenesis and fluorescence product in brain of D-galactose induced ageing accelerated mice. Indian J Exp Biol. 2010;48(4):378-382. PMID: 20726336
- Kim Y-S, Hwang JW, Jang JH, et al. Trapa japonica Pericarp Extract Reduces LPS-Induced Inflammation in Macrophages and Acute Lung Injury in Mice. Molecules. 2016;21(3):392. doi: 10.3390/molecules21030392
- Li F, Liu X, Yu X, et al. Optimization of the extraction, preliminary characterization, and anti-inflammatory activity of crude polysaccharides from the stems of Trapa quadrispinosa. RSC Adv. 2019;9(39):22540-22550. doi: 10.1039/c8ra09994d
- Nam GH, Kawk HW, Kim SY, et al. Solvent fractions of fermented Trapa japonica fruit extract stimulate collagen synthesis through TGF-β1/GSK-3β/β-catenin pathway in human dermal fibroblasts. J Cosmet Dermatol. 2020;19(1):226-233. doi: 10.1111/jocd.13253
- Nam GH, Jo KJ, Park YS, et al. The peptide AC 2 isolated from Bacillus-treated Trapa japonica fruit extract rescues DHT (dihydrotestosterone)-treated human dermal papilla cells and mediates mTORC1 signaling for autophagy and apoptosis suppression. Sci Rep. 2019;9(1):16903. doi: 10.1038/s41598-019-53347-3
- Nam GH, Jo KJ, Park YS, et al. Bacillus/Trapa japonica Fruit Extract Ferment Filtrate enhances human hair follicle dermal papilla cell proliferation via the Akt/ERK/GSK-3β signaling pathway. BMC Complement Altern Med. 2019;19(1):104. doi: 10.1186/s12906-019-2514-8
- Naseem S, Bhat SU, Gani A, et al. Starch exploration in Nelumbo nucifera and Trapa natans: Understanding physicochemical and functional variations for future perspectives Int J Biol Macromol. 2024;274(2):133077. doi: 10.1016/j.ijbiomac.2024.133077
- Dularia C, Sinhmar A, Thory R, et al. Development of starch nanoparticles based composite films from non-conventional source – Water chestnut (Trapa bispinosa). Int J Biol Macromol. 2019;136:1161-1168. doi: 10.1016/j.ijbiomac.2019.06.169
Дополнительные файлы
