Problems of Surface Defectoscopy of Metals using Machine Learning and Ways for Their Solutions

封面

如何引用文章

全文:

详细

Rejection of metal products is an important stage of the production process aimed at ensuring the best quality of the final product. Traditional rejection methods, based on visual inspection or the use of simple automated systems, have their limitations and disadvantages, such as low speed and accuracy of defect classification. The paper examines the possibility of using various machine learning methods to classify defects in metal products. A comparative analysis of these algorithms, as well as their effectiveness, is carried out in order to determine the most suitable approach to the automatic rejection of metal products.

作者简介

Kirill Rybakov

Kazan State Power Engineering University

编辑信件的主要联系方式.
Email: kotya.ribak@mail.ru
ORCID iD: 0009-0005-3781-5259

2nd year master's student of the Department of Information Technologies and Intelligent Systems

俄罗斯联邦, 51, Krasnoselskaya Str., Kazan, 420066, Russian Federation

Renat Khamitov

Kazan State Power Engineering University

Email: hamitov@gmail.com
ORCID iD: 0000-0002-9949-4404

Associate Professor of the Department of Information Technologies and Intelligent Systems, Candidate of Technical Sciences

俄罗斯联邦, 51, Krasnoselskaya Str., Kazan, 420066, Russian Federation

参考

  1. Alekseev I.P., Lapteva T.V. Prospects of application of capsule neural networks in object recognition on images. KIP i avtomatika: obsluzhivanie i remont, 2022, no. 1, pp. 50-53.
  2. Shorina T.V., Khamitov R.M. Visual image recognition by means of the Python programming language. Nauchno-tekhnicheskiy vestnik Povolzh'ya, 2023, no. 12, pp. 639-641.
  3. Saltanaeva E.A., Kutsenko S.M. Construction of pattern recognition systems based on artificial intelligence. Nauchno-tekhnicheskiy vestnik Povolzh'ya, 2023, no. 12, pp. 376-378.
  4. Fakhrutdinov R.R., Khamitov R.M. Research of methods of defects recognition on the image for objects of fuel and energy complex. Collection of scientific articles of the VIII International Scientific Conference. Kazan, 2021, pp. 126-129.
  5. Krzysztof Lalik, Mateusz Kozek, Paweł Gut, Marek Iwaniec, Grzegorz Pawłowski. June 22, 2022 SVM Algorithm for Industrial Defect Detection and Classification. URL: https://www.matec-conferences.org/articles/matecconf/abs/2022/04/matecconf_mms2020_04004/matecconf_mms2020_04004.html (accessed 15.02.2023).
  6. Shuai Wang, Xiaojun Xia, Lanqing Ye, Binbin Yang. Automatic Detection and Classification of Steel Surface Defect Using Deep Convolutional. February 26, 2021. URL: Neural Networks https://www.mdpi.com/2075-4701/11/3/388 (accessed February 18, 2023).
  7. Suvdaa B., Ahn J., Ko J. Steel surface defects detection and classification using SIFT and voting strategy. April 2, 2012. URL:https://www.researchgate.net/publication/293134660_Steel_surface_defects_detection_and_classification_using_SIFT_and_voting_strategy (accessed 14.02.2023).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Rybakov K.M., Khamitov R.M., 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».