Recovery of electron density signals beyond the operating range of the measuring instrument

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Machine learning models have been widely incorparated into control systems aimed at improving the operational efficiency of tokamaks. The training machine learning models requires substantial datasets. However, data collection is limited because experimental campaigns on tokamaks are prolonged in time. Furthermore, the amount of suitable training data may decrease due to the present of faulty diagnostic signals. Additionally, the frequency of faulty signal occurrences increases while initial operation of a new tokamak or specialized equipment. This work examines the possibility of recovering faulty signals using machine learning techniques. Particularly, we focus on recovering signals obtained beyond the operating range of measuring instruments. Thus, recovering such kind of signals should increase the volume of available training data, consequently enhancing the efficacy of machine learning-based model training.

About the authors

Nikolai V. Leshov

Moscow Technical University of Communications and Informatics (MTUCI); State Research Centre of the Russian Federation Troitsk Institute for Innovation and Fusion Research

Author for correspondence.
Email: nikolya.leshov@gmail.com
ORCID iD: 0000-0002-7844-1768

postgraduate student, Department of Mathematical Cybernetics and Information Technologies

Russian Federation, Moscow; Troitsk, Moscow

Anastasia N. Shcherbak

State Research Centre of the Russian Federation Troitsk Institute for Innovation and Fusion Research

Email: shcherbak@triniti.ru
ORCID iD: 0000-0002-0942-9837

leading engineer, Laboratory of Tokamak Plasma Diagnostics and Plasma Physics, Department of Tokamak and Current-Carrying Plasma Physics

Russian Federation, Troitsk, Moscow

Mikhail G. Gorodnichev

Moscow Technical University of Communications and Informatics (MTUCI)

Email: m.g.gorodnichev@mtuci.ru
ORCID iD: 0000-0003-1739-9831

Cand. Sci. (Eng.), Associate Professor, Dean, Faculty “Information Technology”

Russian Federation, Moscow

References

  1. Wesson J. Tokamaks. 4th ed. Oxford University Press, 2011. 828 p. (International Series of Monographs on Physics)
  2. O’Shea F. H. et al. Coincidence anomaly detection for unsupervised locating of edge localized modes in the DIII-D tokamak dataset. Machine Learning: Science and Technology. 2024. Vol. 5. No. 3. 035050.
  3. Lu J. et al. Fast equilibrium reconstruction by deep learning on EAST tokamak. AIP Advances. 2023. Vol. 13. No. 7.
  4. Degrave J. et al. Magnetic control of tokamak plasmas through deep reinforcement learning. Nature. 2022. Vol. 602. No. 7897. Pp. 414–419.
  5. Zheng W. et al. Hybrid neural network for density limit disruption prediction and avoidance on J-TEXT tokamak. Nuclear Fusion. 2018. Vol. 58. No. 5. 056016.
  6. Zhu J. X. et al. Integrated deep learning framework for unstable event identification and disruption prediction of tokamak plasmas. Nuclear Fusion. 2023. Vol. 63. No. 4. 046009.
  7. Zhu J. X. et al. Hybrid deep-learning architecture for general disruption prediction across multiple tokamaks. Nuclear Fusion. 2020. Vol. 61. No. 2. 026007.
  8. Yang Z. et al. Implementing deep learning-based disruption prediction in a drifting data environment of new tokamak: HL-3. Nuclear Fusion. 2024.
  9. Abbate J. et al. Data-driven profile prediction for DIII-D. Nuclear Fusion. 2021. Vol. 61. No. 4. 046027.
  10. Felici F. et al. Real-time-capable prediction of temperature and density profiles in a tokamak using RAPTOR and a first-principle-based transport model. Nuclear Fusion. 2018. Vol. 58. No. 9. 096006.
  11. Chayapathy D. et al. Time series viewmakers for robust disruption prediction. In: Machine learning and the physical sciences workshop. NeurIPS, 2024.
  12. Hochreiter S. et al. Long short-term memory. Neural Computation. 1997. Vol. 9. No. 8. Pp. 1735–1780.
  13. Guo B.H. et al. Disruption prediction on EAST tokamak using a deep learning algorithm. Plasma Physics and Controlled Fusion. 2021. Vol. 63. No. 11. 115007.
  14. Seo J. et al. Feedforward beta control in the KSTAR tokamak by deep reinforcement learning. Nuclear Fusion. 2021. Vol. 61. No. 10. 106010.
  15. Matos F. et al. Classification of tokamak plasma confinement states with convolutional recurrent neural networks. Nuclear Fusion. 2020. Vol. 60. No. 3. 036022.
  16. Akiba T. et al. Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. 2019. Pp. 2623–2631.
  17. Kingma D. P. et al. Adam: A method for stochastic optimization. Published as a conference paper at the 3rd International Conference for Learning Representations. San Diego, 2015.
  18. Paszke A. et al. Pytorch: An imperative style, high-performance deep learning library. In: Advances in neural information processing systems. 2019. Vol. 32.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Correct signal

Download (144KB)
3. Fig. 2. Signal beyond operating range

Download (139KB)
4. Fig. 3. Transformed signal beyond operating range

Download (140KB)
5. Fig. 4. Distribution by duration of the “gap”

Download (189KB)
6. Fig. 5. Synthetic signal

Download (136KB)
7. Fig. 6. Distribution of signals beyond operating range in space

Download (243KB)
8. Fig. 7. Distribution of correct signals in space

Download (394KB)
9. Fig. 8. Model architecture

Download (111KB)
10. Fig. 9. Learning curve

Download (116KB)
11. Fig. 10. Recovered synthetic signal

Download (152KB)
12. Fig. 11. Recovered signal and original signal

Download (597KB)


License URL: https://www.urvak.ru/contacts/

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».