Effective data model selection for infological entities in multimodel database systems

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The article addresses the problem of selecting effective data models for infological entities in the context of designing multimodel databases. The focus is placed on the need for a systematic approach when modeling heterogeneous entities whose structure and behavior require different forms of representation. The study analyzes the characteristics of three widely used models – relational, graph, and multidimensional – in terms of their applicability to various types of infological entities. Key criteria influencing model selection are described, including data structure, interconnectivity, query patterns, mutability, scalability, and consistency requirements. A decision-making algorithm is proposed, based on analyzing entity characteristics and the system’s non-functional requirements. Particular attention is given to the advantages and challenges of multimodel solutions, as well as principles of coordinating different models within a unified architectural framework. The work aims to provide a methodological foundation for rational model selection and for enhancing the adaptability and sustainability of information systems.

作者简介

Nikita Mishin

Bauman Moscow State Technical University

编辑信件的主要联系方式.
Email: stancuem@yandex.ru
ORCID iD: 0009-0008-3076-8076
SPIN 代码: 2572-3667

postgraduate student, Department of Information Processing and Control Systems

俄罗斯联邦, Moscow

Gennady Afanasyev

Bauman Moscow State Technical University

Email: gaipcs@bmstu.ru

Cand. Sci. (Eng.), Associate Professor; associate professor

俄罗斯联邦, Moscow

Rustam Khayrullin

Bauman Moscow State Technical University; Moscow State University of Civil Engineering (National Research University)

Email: zrkzrk@list.ru
ORCID iD: 0000-0002-0596-4955
SPIN 代码: 6631-0932

Dr. Sci. (Eng.), Senior Scientific Worker; Professor

俄罗斯联邦, Moscow; Moscow

参考

  1. Aguilar Vera R. et al. NoSQL database modeling and management: A systematic literature review. Revista Facultad de Ingeniería. 2023. Vol. 32. No. 65 (32). Art. e16519. doi: 10.19053/01211129.v32.n65.2023.16519.
  2. Daniel G. et al. NeoEMF: A multi-database model persistence framework for very large models. Science of Computer Programming. 2017. No. 149. Pp. 9–14. doi: 10.1016/j.scico.2017.08.002.
  3. Gabrielsen R.H., Olesen O. The Concept of lineaments in geological structural analysis; Principles and methods: A review based on examples from Norway. Geomatics. 2024. No. 2 (4). Pp. 189–212. doi: 10.3390/geomatics4020011.
  4. Gerasimov V.R., Dusheba V.V. Analysis of optimizing database performance methods // Èlektronnoe modelirovanie. 2024. No. 6 (46). Pp. 43–54. doi: 10.15407/emodel.46.06.043.
  5. Gupta S., Pal S., Chakraborty M. A Study on various database models: Relational, graph, and hybrid databases. Singapore: Springer, 2019. Pp. 141–149. doi: 10.1007/978-981-15-0361-0_11.
  6. Jiri H. et al. Multidimensional database for crime prevention. IEEE, 2016. Pp. 242–247. doi: 10.1109/carpathiancc.2016.7501102.
  7. Labiadh M. et al. A microservice-based framework for exploring data selection in cross-building knowledge transfer. Service Oriented Computing and Applications. 2020. No. 2 (15). Pp. 97–107. doi: 10.1007/s11761-020-00306-w.
  8. Larson D., Chang V. A review and future direction of agile, business intelligence, analytics and data science. International Journal of Information Management. 2016. No. 5 (36). Pp. 700–710. doi: 10.1016/j.ijinfomgt.2016.04.013.
  9. Lebedev I.I., Ogorodnikov S.S. Storage and analysis of remote sensing data // Russian Engineering Research. 2024. No. 4 (44). Pp. 597–599. doi: 10.3103/s1068798x24700485.
  10. Lou J. et al. Willingness to pay for well-being housing attributes driven by design layout: Evidence from Hong Kong. Building and Environment. 2024. No. 251. Art. 111227. doi: 10.1016/j.buildenv.2024.111227.
  11. Margara A. et al. A model and survey of distributed data-intensive systems. ACM Computing Surveys. 2023. No. 1 (56). Pp. 1–69. doi: 10.1145/3604801.
  12. Molka-Danielsen J., Engelseth P., Wang H. Large scale integration of wireless sensor network technologies for air quality monitoring at a logistics shipping base. Journal of Industrial Information Integration. 2018. No. 10. Pp. 20–28. doi: 10.1016/j.jii.2018.02.001.
  13. Murri S. Optimising data modeling approaches for scalable data warehousing systems. International Journal of Scientific Research in Science, Engineering and Technology. 2023. Pp. 369–382. doi: 10.32628/ijsrset2358716.
  14. Pekaric I. et al. A systematic review on security and safety of self-adaptive systems. Journal of Systems and Software. 2023. No. 203. Art. 111716. doi: 10.1016/j.jss.2023.111716.
  15. Petkov Y.I., Chikalanov A.I. Innovative proposals for database storage and management. Mathematics and Informatics. 2022. No. 1 (LXV). Pp. 45–52. doi: 10.53656/math2022-1-6-inn.
  16. Sarawagi S. Models and indices for integrating unstructured data with a relational database. Berlin; Heidelberg: Springer, 2005. Pp. 1–10. doi: 10.1007/978-3-540-31841-5_1.
  17. Shah K., Patel K.S. A Survey on relational database based multi relational classification algorithms. International Journal of Scientific Research in Computer Science, Engineering and Information Technology. 2024. No. 2 (10). Pp. 140–147. doi: 10.32628/cseit2390656.
  18. Shahidinejad J., Kalantari M., Rajabifard A. 3D cadastral database systems – a systematic literature review. ISPRS International Journal of Geo-Information. 2024. No. 1 (13). P. 30. doi: 10.3390/ijgi13010030.
  19. Tan Z., Yue P., Gong J. An array database approach for earth observation data management and processing. ISPRS International Journal of Geo-Information. 2017. No. 7 (6). P. 220. doi: 10.3390/ijgi6070220.
  20. Zhang J. et al. Public cloud networks oriented deep neural networks for effective intrusion detection in online music education. Computers and Electrical Engineering. 2024. No. 115. Art. 109095. doi: 10.1016/j.compeleceng.2024.109095.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Experimental methodology

下载 (91KB)
3. Fig. 2. Clustering of data in three-dimensional space

下载 (126KB)
4. Fig. 3. Polynomial functions for each data model

下载 (43KB)


许可 URL: https://www.urvak.ru/contacts/

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».