Импульсный туннельный эффект: фундаментальные основы и перспективы применения

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В первой части статьи рассмотрены фундаментальные аспекты импульсного туннельного эффекта как единого механизма для описания туннельных явлений в различных областях физики. Проанализированы основные положения теории импульсного туннелирования, разработанной Келдышем. Рассмотрены особенности реализации эффекта в оптике, наноэлектронике, для перовскитов и других материалов. Показана роль когерентности излучения. Обсуждаются перспективы регулирования свойств материалов и наблюдения нестандартных явлений благодаря ИТЭ. Во второй части рассматриваются тонкости импульсного туннельного эффекта как основополагающего механизма взаимодействия излучения с веществом. Анализируются преимущества ИТЭ по сравнению со стандартным квантовым туннельным эффектом. Особое внимание уделено роли когерентности излучения и однонаправленной поляризации при импульсном воздействии. Рассмотрены особенности проявления эффектов в оптике, нанотехнологиях и биологии. Показана перспективность использования ИТЭ для создания новых функциональных материалов и эффективных технологий.

Об авторах

Рустам Хакимович Рахимов

Институт материаловедения Научно-производственного объединения «Физика-Солнце» Академии наук Республики Узбекистан

Автор, ответственный за переписку.
Email: rustam-shsul@yandex.com
ORCID iD: 0000-0001-6964-9260

доктор технических наук, заведующий лабораторией № 1

Узбекистан, Ташкент

Список литературы

  1. Гольданский В.И., Трахтенберг Л.И., Флёров В.Н. Туннельные явления в химической физике. М.: Наука, 1986. 296 с.
  2. Блохинцев Д.И. Основы квантовой механики. 4 изд., М., 1963.
  3. Ландау Л.Д., Лифшиц Е.М. Квантовая механика (нерелятивистская теория) // Теоретическая физика. Т. III. Изд. 3-е, перераб. и доп. М.: Наука, 1974. 752 с.
  4. Mohsen R. Квантовая теория туннелирования = Quantum Theory of Tunneling. 2nd ed. Singapore: World Scientific Publishing Co., 2013. 820 с. ISBN: 9814525006.
  5. Рахимов Р.Х., Ермаков В.П., Рахимов М.Р. Фононный механизм преобразования в керамических материалах // Computational Nanotechnology, 2017. № 4. C. 21–35. EDN: YMLCBV
  6. Rakhimov R.Kh., Hasanov R.Z., Yermakov V.P. Comparative frequency characteristics of vibrations generated by the functional ceramics and cavitation generator // Computational Nanotechnology. 2018. No. 4. Pp. 57–70. EDN: YTRCUX
  7. Рахимов Р.Х., Хасанов Р.З., Ермаков В.П. Частотные характеристики генератора резонансных колебаний // Computational Nanotechnology. 2017. № 4. С. 6–13. EDN: YMLCBV
  8. Рахимов Р.Х. Особенности синтеза функциональной керамики с комплексом заданных свойств радиационным методом. Ч. 8. Основы теории резонансной терапии по методу Р. Рахимова (метод «INFRA R») // Computational Nanotechnology. 2016. № 4. С. 32–135. EDN: XDMJQV
  9. Парпиев О.Р., Сулейманов С.Х., Рахимов Р.Х. и др. Синтез материалов на большой солнечной печи, Ташкент, 2023. С. 590.
  10. Рахимов Р.Х., Саидов М.С., Ермаков В.П. Особенности синтеза функциональной керамики с комплексом заданных свойств радиационным методом. Ч. 5. Механизм генерации импульсов функциональной керамикой // Computational Nanotechnology. 2016. № 2. С. 81–93. EDN: WCMIAZ
  11. Рахимов Р.Х. Применение керамических материалов. Lambert, Дюссельдорф, 2023. Т. 1. С. 278.
  12. Рахимов Р.Х. Применение керамических материалов. Lambert, Дюссельдорф, 2023. Т. 2. С. 202.
  13. Рахимов Р.Х. Применение керамических материалов. Lambert, Дюссельдорф, 2023. Т. 3. С. 384.
  14. Рахимов Р.Х. Применение керамических материалов. Lambert, Дюссельдорф, 2023. Т. 4. С. 220.
  15. Рахимов Р.Х. Возможности импульсных преобразователей энергии в качестве фотокатализаторов в водородной энергетике: матер. III Междунар. конф. «Тенденции развития физики конденсированных сред» (Фергана, 30–31 октября 2023 г.). С. 297–300.
  16. Рахимов Р.Х., Ермаков В.П. Перспективы солнечной энергетики: роль современных гелиотехнологий в производстве водорода // Computational Nanotechnology. 2023. Т. 10. № 3. C. 11–25. doi: 10.33693/2313-223X-2023-10-3-11-25. EDN: NQBORL.
  17. Водород за счет света с фотокатализаторами на основе ФК на принципе ИТЭ. URL: https://www.youtube.com/watch?v=2LCj_zz_Tvg
  18. Рахимов Р.Х., Рашидов Х.К., Эрназаров М. Физические методы воздействия при обогащении техногенного и рудного сырья: матер. интернациональной конф. “Fundamental and Applied Problems of Modern Physics” (19–21 октября 2023 г.). С. 49–51.
  19. Попов В.С. Туннельная и многофотонная ионизация атомов и ионов в сильном лазерном поле (теория Келдыша) // Успехи физических наук. 2004. Т. 174. № 9. С. 921–955.
  20. Федоров М.В. Работа Л.В. Келдыша «Ионизация в поле сильной электромагнитной волны» и современная физика взаимодействия атомов с сильным лазерным полем» // ЖЭТФ. 2016. Т. 149. Вып. 3. С. 522–529.
  21. Аммосов М.В., Делоне Н.Б., Крайнов В.П. Взаимодействие атомов с интенсивным излучением // УФН. 1986. Т. 148. № 6.
  22. Никишов А.И., Ритус В.И. Кинетика многофотонных процессов в сильном излучении // ЖЭТФ. 1966. Т. 50. № 4.
  23. Рис Х. Расчеты многофотонной ионизации атомов в сильном лазерном поле // Phys. Rev. A. 1980. Т. 22. № 5.
  24. Коркум П.Б. Высокие гармоники с помощью сильных лазерных полей // Phys. Rev. Lett. 1993. Т. 71. № 11.
  25. Мешков М.Д. Модели импульсных туннельных явлений во взаимодействии сильного светового поля с атомами // ЖЭТФ. 1999. Т. 116. № 4.
  26. Silaev M., Vvedenskii N. Strong-field approximation beyond the Keldysh theory // Phys. Rev. A. 2014. Vol. 90. No. 6.
  27. Бевз Г.П. Физика атомно-лазерных взаимодействий: монография. 2012.
  28. Квантовый туннельный эффект: учеб. пособие / под ред. В.В. Иванова, А.М. Прохорова. 2016.
  29. Рахимов Р.Х., Ермаков В.П., Рахимов М.Р. Фононный механизм преобразования в керамических материалах // Comp. Nanotechnol. 2017. № 4. C. 21–35. EDN: QIHKBR
  30. Рахимов Р.Х., Ермаков В.П., Рахимов М.Р., Мухторов Д.Н. Возможности полиэтилен-керамического композита в сравнении с полиэтиленовой пленкой в реальных условиях эксплуатации // Computational Nanotechnology. 2022. Т. 9. № 2. С. 67–72. doi: 10.33693/2313-223X-2022-9-2-67-72. EDN: UYDJMZ
  31. Рахимов Р.Х., Петер Дж., Ермаков В.П., Рахимов М.Р. Перспективы применения полимер-керамического композита в производстве микроводорослей // Computational Nanotechnology. 2019. Т. 6. № 4. С. 44–48. doi: 10.33693/2313-223X-2019-6-4-44-48. EDN: SKQYLC

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Зависимость частоты следования импульсов от подаваемой мощности



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».