Evolution of the capabilities of large language models in the legal field: Meta-analysis of four experimental studies

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper presents a meta-analysis of four experimental studies from the Norm! project, aimed at systematically studying the effectiveness of large language models in the legal field. The study includes a comparative analysis of junior and senior models, optimization of system prompts, and testing of multi-agent architectures on tasks in Russian family and civil law. A key discovery was the identification of a nonlinear relationship between architectural complexity and the quality of results: the transition from simple to complex systems provides a slight increase in quality (15–40%) with an exponential increase in resource costs (by a factor of 10–15). The flagship models GPT-4.1 and Gemini 2.5 Pro demonstrate superior quality (9.04 and 8.52 points), but junior LLMs with efficiency coefficients up to 130.3 remain cost-effective. A universal problem area for all architectures is tasks requiring an integrative analysis of multiple legal norms. The results form scientifically sound recommendations for various implementation scenarios: from mass consulting services to specialized legal applications, defining the prospects for the development of hybrid architectures in legal practice.

About the authors

Roman V. Dushkin

National Research Nuclear University “MEPhI”

Author for correspondence.
Email: drv@aia.expert
ORCID iD: 0000-0003-4789-0736
SPIN-code: 1371-0337

senior lecturer, Department 22 “Cybernetics”

Russian Federation, Moscow

Vladimir N. Podoprigora

Plekhanov Russian University of Economics

Email: Podoprigora.VN@rea.ru
ORCID iD: 0000-0001-6485-8135
SPIN-code: 9587-1028

Cand. Sci. (Econ.), head of the laboratory

Russian Federation, Moscow

Alexey A. Kuzmin

Ecosystem Digital Solutions LLC

Email: a.kuzmin@edisai.tech

general director

Russian Federation, Moscow

Kirill R. Dushkin

A-Ya expert LLC

Email: dkr@aia.expert

analyst

Russian Federation, Moscow

References

  1. Dushkin R.V. Artificial Intelligence. Moscow: DMK-Press, 2019. 280 p. ISBN: 978-5-97060-787-9.
  2. Lai J., Gan W., Wu J. et al. Large language models in law: A survey. AI Open. 2024. URL: https://www.sciencedirect.com/science/article/pii/S2666651024000172 (data of accesses: 13.10.2023).
  3. Ma S., Chen C., Chu Q. et al. Leveraging large language models for relevance judgments in legal case retrieval. arXiv preprint arXiv:2403.18405. 2024. URL: https://arxiv.org/abs/2403.18405 (data of accesses: 13.10.2023).
  4. Paul V. Automation in legal: The increasing role of AI. Medium. 2024. URL: https://medium.com/@vincentpaulai/automation-in-legal-the-increasing-role-of-ai-70724ef0b225 (data of accesses: 13.10.2023).
  5. Magesh V., Surani F., Dahl M. et al. Hallucination-free? Assessing the reliability of leading AI legal research tools. arXiv preprint arXiv:2405.20362. 2024. URL: https://arxiv.org/abs/2405.20362 (data of accesses: 13.10.2023).
  6. The future of artificial intelligence in the legal industry: Opportunities, challenges, and ethical considerations. Legal Stuff. URL: https://medium.com/@legal.stuff.notion/the-future-of-artificial-intelligence-in-the-legal-industry-opportunities-challenges-and-ethical-61c3198b425a (data of accesses: 13.10.2023).
  7. Korneenkov A.A., Yanov Yu.K., Ryazantsev S.V. et al. Meta-analysis of clinical studies in otorhinolaryngology. Bulletin of Otorhinolaryngology. 2020. Vol. 85. No. 2. Pp. 26–30. (In Rus.). doi: 10.17116/otorino20208502126.
  8. Dushkin R.V. Overview of approaches and methods of artificial intelligence. Radio Electronic Technologies. 2018. No. 3. Pp. 85–89. (In Rus.)
  9. Rumyantsev P.O., Saenko U.V., Rumyantseva U.V. Statistical methods of analysis in clinical practice. Part 1. Univariate statistical analysis. Problems of Endocrinology. 2009. Vol. 55. No. 5. Pp. 48–55. (In Rus.). doi: 10.14341/probl200955548-55.
  10. Dushkin R.V. Why hybrid AI systems hold the future. Economic Strategies. 2018. No. 6 (156). Pp. 84–93. (In Rus.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Stages of conducting meta-analysis of LLMs in the legal domain

Download (299KB)
3. Fig. 2. Comparative analysis of quality and economic efficiency of lesser LLMs: a – quality of responses of lesser LLMs in the legal domain; b – economic efficiency of lesser LLMs

Download (223KB)
4. Fig. 3. Comparative analysis of effectiveness of various system prompts for GPT-4o mini: a – quality of responses of various system prompts; b – economic efficiency of prompts; c – token consumption by various agents Agent: 1 – universal; 2 – specialized; 3 – modified; 4 – overtrained

Download (273KB)
5. Fig. 4. Comparative analysis of greater LLMs performance by overall indicators and complexity levels: a – performance of greater LLMs in the legal domain; b – performance of top-3 LLMs by task complexity levels Level: 1 – simple; 2 – secondary; 3 – combination; 4 – collisions; 5 – problematic

Download (312KB)
6. Fig. 5. Comparative analysis of MAS architectures by quality, resource consumption and efficiency a – quality of responses of different MAS architectures; b – token consumption by MAS architectures; c – economic efficiency of MAS architectures Variant: 1 – simple; 2 – with dispatcher; 3 – modified; 4 – ensemble; 5 – with jury

Download (263KB)


License URL: https://www.urvak.ru/contacts/

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».