Development and Research of Distributed Control Algorithms for Swarm Intelligence Systems
- Authors: Ershov N.M.1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: Vol 9, No 2 (2022)
- Pages: 21-34
- Section: Articles
- URL: https://bakhtiniada.ru/2313-223X/article/view/147132
- DOI: https://doi.org/10.33693/2313-223X-2022-9-2-21-34
- ID: 147132
Cite item
Abstract
Full Text
##article.viewOnOriginalSite##About the authors
Nikolay M. Ershov
Lomonosov Moscow State University
Email: ershov@gse.cs.msu.ru
Cand. Sci. (Phys.-Math.); senior research at the Faculty of Computational Mathematics and Cybernetics Moscow, Russian Federation
References
- Beni G., Wang J. Swarm intelligence in cellular robotic systems, proceed. In: NATO advanced workshop on robots and biological systems. Tuscany, Italy, 1989. Pp. 703-712.
- Karpenko A.P. Modern algorithms for search optimization. Мoscow: Bauman MSTU, 2014.
- Dorigo M., Gambardella L.M. Ant Colony System: A cooperative learning approach to the traveling salesman problem // IEEE Transactions on Evolutionary Computation. 1997. No. 1 (1). Pp. 53-66.
- Sahin E. Swarm robotics: From sources of inspiration to domains of application. In: Swarm robotics. E. Sahin, W.M. Spears (eds.). 2005. LNCS 3342. Pp. 10-20.
- Ershov N.M. Introduction to distributed simulation in the NetLogo environment. Мoscow: DMK Press, 2018.
- Wilensky U., Rand W. An introduction to agent-based modeling; Modeling natural, social, and engineered complex systems with NetLogo. Cambridge, Massachusetts: MIT Press, 2015.
- Nelson E. Dynamical theories of Brownian motion, mathematical notes. Princeton University Press, 1967.
- Xin-She Yang. Random walks and optimization, nature-inspired optimization algorithms. 2014. Pp. 45-65.
- Reynolds C.W. Flocks, herds and schools: A distributed behavioral model // Computer Graphics. 2021. No. 4. Pp. 25-34.
- Bayindir L. A Review of swarm robotics tasks // Neurocomputing. 2016. Vol. 172. Pp. 292-321.
- Passino K. Biomimicry of bacterial foraging for distributed optimization and control // IEEE Control Systems Magazine. 2002. No. 22. Pp. 52-67.
- Newton D., Pasupathy R., Yousefian F. Recent trends in stochastic gradient descent for machine learning and Big Data // Winter Simulation Conference. 2018. Pp. 366-380.
- Berdahl A., Torney C.J., Ioannou C.C. et al. Emergent sensing of complex environments by mobile animal groups // Science. 2013. No. 339 (6119). Pp. 574-576.
- Voevodin V.V., Voevodin Vl.V. Parallel computing. St. Petersburg: BHV-Petersburg, 2002.
Supplementary files
