Neural Networks in the Task of Genre Classification of Musical Compositions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study investigates the application of neural networks in the task of classifying audio signals into ten different genres. The peculiarities of processing audio signals in the digital environment are examined, along with the relationship between Fourier transformation and spectrograms, and the characteristics of audio signals. Neural network training was conducted using the GTZAN dataset, which contains 1000 compositions. Four comparable datasets were formed based on this dataset, and the performance of three neural network architectures – convolutional, recurrent, and multilayer perceptron – was evaluated on each of them. The practical significance of this work lies in the possibility of forming musical recommendations and organizing music. The goal of the study is to develop a classifier that could accurately determine the probability of a composition belonging to one of the ten genres.

About the authors

Mikhail A. Belenkiy

Financial University under the Government of the Russian Federation

Author for correspondence.
Email: michael.belenkiy@yandex.ru
ORCID iD: 0009-0005-9079-9489

student, Faculty of Information Technology and Big Data Analysis

Russian Federation, Moscow

Natalia V. Grineva

Financial University under the Government of the Russian Federation

Email: ngrineva@fa.ru
ORCID iD: 0000-0001-7647-5967

Cand. Sci. (Econ.), Associate Professor, associate professor, Department of Data Analysis and Machine Learning

Russian Federation, Moscow

References

  1. Silla C.N., Koerich A.L., Kaestner C.A.A. A feature selection approach for automatic music genre classification. International Journal of Semantic Computing. 2009. No. 03. Pp. 183–208.
  2. Geoffroy P. A large set of audio features for sound description (similarity and classification). In: CUIDADO Project. 2004.
  3. Silla C., Koerich A., Kaestner C. A machine learning approach to automatic music genre classification». Journal of the Brazilian Computer Society. 2008. Vol. 14. No. 3.
  4. Tzanetakis G., Cook P. MARSYAS: A framework for audio analysis. Organised Sound. 2000. No. 4 (3). Pp. 169–175.
  5. Tzanetakis G., Essl G., Cook P. Automatic musical genre classification of audio signals. In: Proc. Int. Symp. Music Information Retrieval (ISMIR). Oct. 2001.
  6. Tzanetakis G., Cook P. Musical genre classification of audio signals. IEEE Transactions on Speech and Audio Processing. 2002. Vol. 10. No. 5. Pp. 293–302.
  7. Choi K., Fazekas G., Sandler M. Automatic tagging using deep convolutional neural networks. In: Intl. Society for Music Information Retrieval Conf. (ISMIR). 2016.
  8. Choi K., Fazekas G., Sandler M., Cho K. Convolutional recurrent neural networks for music classification. 2016.
  9. Rafi Q.G., Noman M., Prodhan S.Z. et al. Comparative analysis of three improved deep learning architectures for music genre classification. International Journal of Information Technology and Computer Science. 2021. No. 13. Pp. 1–14.
  10. Van den Oord A., Dieleman S., Schrauwen B. Deep content-based music recommendation. In: Advances in Neural Information Processing Systems. 2013. Pp. 2643–2651.
  11. Van den Oord A., Dieleman S., Schrauwen B. Transfer learning by supervised pre-training for audio-based music classification. In: Conference of the International Society for Music Information Retrieval, (ISMIR 2014). 2014.
  12. Vaibhavi M., Krishna P.R. Music genre classification using neural networks with data augmentation. 2021.
  13. Crème M., Burlin C., Lenain R. Music genre classification. Stanford University, December 15, 2016.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Audio oscillogram

Download (112KB)
3. Fig. 2. Fourier Transform

Download (26KB)
4. Fig. 3. Audio spectrogram

Download (391KB)
5. Fig. 4. Window Functions for STFT

Download (88KB)
6. Fig. 5. Mel-spectrogram

Download (269KB)
7. Fig. 6. Spectral centroid

Download (96KB)
8. Fig. 7. Spectral bandwidth for p = 2, 3, and 4

Download (123KB)
9. Fig. 8. Spectral rolloff

Download (97KB)
10. Fig. 9. Spectral flux

Download (97KB)
11. Fig. 10. Zero Crossing Rate

Download (121KB)
12. Fig. 11. Low Energy Feature

Download (133KB)
13. Fig. 12. MFCC coefficients extraction algorithm

Download (17KB)
14. Fig. 13. MFCC coefficients (1–5)

Download (30KB)
15. Fig. 14. Convolutional neural network (CNN) architecture

Download (71KB)
16. Fig. 15. Multilayer perceptron (MLP) architecture

Download (76KB)
17. Fig. 16. Confusion matrix for CNN model

Download (41KB)
18. Fig. 17. Confusion matrix for MLP model

Download (41KB)


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».