Multi-task Conditions for the Management of Fire and Rescue Units During Rolling Stock Extinguishing at Metallurgical Enterprises

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article defines algorithms for assessing the cognitive capabilities of the head of a fire and rescue unit and also considers the managerial task of minimizing the decision-making time of the head in the field of extinguishing fires of railway trains at a metallurgical enterprise based on the conditions of multitasking, the factors of decision-making in the conditions of operational multitasking are considered. The results obtained can be used to adjust the existing model of fire and rescue units management when extinguishing fires of rolling stock at metallurgical enterprises. This work is intended for those who make managerial decisions and manage forces and means when extinguishing fires.

About the authors

Denisov N. Denisov

State Fire Academy of Emercom of Russia

Email: dan_aleks@mail.ru
Dr. Sci. (Eng.), Professor; professor at the Department of Fire Tactics and Service (as part of the educational and scientific fire-fighting complex) Moscow, Russian Federation

Mikhail M. Danilov

State Fire Academy of Emercom of Russia

Email: mdagps@yandex.ru
Cand. Sci. (Eng.); associate professor at the Department of Fire Tactics and Service (as part of the educational and scientific fire-fighting complex) Moscow, Russian Federation

Sergei N. Anikin

State Fire Academy of Emercom of Russia

Email: neytrinos@mail.ru
postgraduate at the Department of Fire Tactics and Service (as part of the educational and scientific fire-fighting complex) Moscow, Russian Federation

Irina G. Tsokurova

State Fire Academy of Emercom of Russia

Email: venskovskaya@bk.ru
postgraduate at the Department of Fire Tactics and Service (as part of the educational and scientific fire-fighting complex) Moscow, Russian Federation

References

  1. Order EMERCOM of Russia dated 16.10.2017 No. 444 (ed. from 28.02.2020) “On approval of the Combat Charter of Fire Protection Units, which determines the procedure for organizing fire fighting and emergency rescue operations” (Registered with the Ministry of Justice of Russia 20.02.2018 No. 50100).
  2. Pranov B.M. Models and methods of automated information processing and their application. In: About one class of problems of optimal allocation of resources. Tver, 1991. Pp. 43-65.
  3. Danilov M.M., Tsokurova G.I., Anikin S.N. Model and algorithm for risk management of firefighters’ deaths during fire extinguishing at metallurgical enterprises. Computational Nanotechnology. 2021. Vol. 8. No. 3. Pp. 76-85. (In Rus.) doi: 10.33693/2313-223X-2021-8-3-76-85
  4. Charron S., Koechlin E. Divided representation of concurrent goals in the human frontal lobes. Science. 2010. No. 328. P. 360. doi: 10.1126/science.1183614.
  5. Antosyak P.P., Voloshin A.F. On the problem of finding a strict resulting ranking in the form of the Kemeni-Snell’s median. In: International Book Series “Information Science and Computing”. Artificial Intelligence and Decision Making. 2007. Pp. 91-98.
  6. Pham Quang Hiep, Kvyatkovskaya I.Yu. The deployment of distribution median to solveproblems of estimations competitiveness telecommunication services. Izvestia VTSU. Series: Current problems of management, computer engineering and informatics in technical systems: Inter-university. coll. scientific papers. 2014. No. 6 (133). Issue 20. Pp. 86-91.
  7. Set of rules. Locations of fire departments. Procedure and method of determination (Ministry of Emergencies of the Russian Federation dated 25.03.2009 No. 181) (ed. from 09.12.2010) [Electronic resource]. URL: http://docs.cntd.ru/document/1200071155
  8. Fires and fire safety in 2016: A statistical digest. D.M. Gordienko (gen. ed.). Moscow: VNIIPO, 2017. 125 p.
  9. Fires and fire safety in 2017: A statistical digest. D.M. Gordienko (gen. ed.). Moscow: VNIIPO, 2018. 126 p.
  10. Fires and fire safety in 2018: A statistical digest. D.M. Gordienko (gen. ed.). Moscow: VNIIPO, 2019. 127 p.
  11. Fires and fire safety in 2019: A statistical digest. D.M. Gordienko (gen. ed.). Moscow: VNIIPO, 2019. 82 p.
  12. Fires and fire safety in 2020: A statistical digest. D.M. Gordienko (gen. ed.). Moscow: VNIIPO, 2021. 114 p.
  13. Huang C., Moraga C. A diffusion-neural-network for learning from small samples // International Journal of Approximate Reasoning. 2004. Vol. 35. Pp. 137-161.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».