Shaping the future of radiotherapy: the role of electron beams and flash techniques

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Relevance. Radiation therapy (RT) remains a cornerstone of oncology, offering targeted treatment for various cancers. With its roots tracing back to the discovery of X-rays by Wilhelm Röntgen and radium research by Marie Curie, RT has evolved into a sophisticated field encompassing a range of techniques. However, the rising global cancer burden highlights the need for continuous advancements to enhance efficacy while minimizing collateral damage. Traditional modalities such as X-rays and gamma rays have established their role in cancer treatment, yet they often lead to unintended damage to healthy tissues. Electron therapy has emerged as a promising alternative, leveraging distinct dosimetric properties that enable precise targeting with limited penetration depth. Low-energy electron beams are ideal for superficial tumors, while Very High-­Energy Electrons (VHEEs) extend the reach to deep-seated tumors, rivalling proton and heavy-ion therapies. Furthermore, the FLASH effect — a phenomenon reducing healthy tissue toxicity at ultra-high dose rates, offers a breakthrough in electron therapy, improving patient quality of life. Despite these advancements, challenges persist. Limited penetration depth, secondary radiation from bremsstrahlung, and complexities in dose delivery systems constrain broader clinical adoption. Moreover, unresolved biological uncertainties, such as variability in relative biological effectiveness (RBE), necessitate further research. This review explores the historical evolution, unique benefits, and limitations of electron therapy compared to traditional modalities. It highlights advancements like VHEEs, FLASH therapy, and hybrid approaches, while addressing technological challenges and the future potential of electron beams in oncology. Conclusion. Integrated with recent technological breakthroughs, electron therapy may redefine the future of radiotherapy by offering safer, more precise, and individualized cancer treatment strategies.

Авторлар туралы

Mikhail Parshenkov

First Moscow State Medical University (Sechenov University)

Хат алмасуға жауапты Автор.
Email: misjakj@gmail.com
ORCID iD: 0009-0004-7170-8783
SPIN-код: 7012-6284
Moscow, Russian Federation

Polina Skovorodko

First Moscow State Medical University (Sechenov University)

Email: misjakj@gmail.com
ORCID iD: 0009-0000-5624-4731
Moscow, Russian Federation

Danila Petrusevich

First Moscow State Medical University (Sechenov University)

Email: misjakj@gmail.com
ORCID iD: 0009-0005-2283-6372
Moscow, Russian Federation

Shagun Makaeva

First Moscow State Medical University (Sechenov University)

Email: misjakj@gmail.com
ORCID iD: 0009-0008-3396-6684
Moscow, Russian Federation

Svetlana Osipova

First Moscow State Medical University (Sechenov University)

Email: misjakj@gmail.com
ORCID iD: 0009-0006-6457-9543
Moscow, Russian Federation

Gumru Ibragimova

First Moscow State Medical University (Sechenov University)

Email: misjakj@gmail.com
ORCID iD: 0009-0007-0478-7137
Moscow, Russian Federation

Alexandra Istyagina

First Moscow State Medical University (Sechenov University)

Email: misjakj@gmail.com
ORCID iD: 0009-0001-3295-8462
Moscow, Russian Federation

Kristina Balaeva

First Moscow State Medical University (Sechenov University)

Email: misjakj@gmail.com
ORCID iD: 0009-0002-2930-6006
Moscow, Russian Federation

Galina Rodionova

First Moscow State Medical University (Sechenov University)

Email: misjakj@gmail.com
ORCID iD: 0000-0002-0536-9590
SPIN-код: 5657-9984
Moscow, Russian Federation

Әдебиет тізімі

  1. Trofimova OP, Tkachev SI, Yurieva TV. The Past and Present of Radiation Therapy in Oncology. Clinical Oncohematology. Fundamental Research and Clinical Practice. 2013;6(4):355–364. (In Russian).
  2. Brailsford JF. Roentgen’s discovery of X-rays; their application to medicine and surgery. British Journal of Radiology. 1946;19(227):453–461. doi: 10.1259/0007-1285-19-227-453
  3. Abergel R, Aris J, Bolch WE, Dewji SA, Golden A, Hooper DA, Margot D, Menker CG, Paunesku T, Schaue D, Woloschak GE. The enduring legacy of Marie Curie: impacts of radium in 21st century radiological and medical sciences. International Journal of Radiation Biology. 2022;98(3):267–275. doi: 10.1080/09553002.2022.2027542
  4. World Health Organization. Global cancer burden growing amidst mounting need for services. 2024 Feb 1 [Accessed Aug, 62024]. Available from: https://www.who.int/news/item/01–02–2024‑global-­cancer-burden-­growing–amidst-­mounting-need-for-services
  5. Upadhyay R, Bazan JG. Advances in Radiotherapy for Breast Cancer. Surgical Oncology Clinics of North America. 2023;32(3):515–536. doi: 10.1016/j.soc.2023.03.002
  6. Meattini I, Livi L, Lorito N, Becherini C, Bacci M, Visani L, Fozza A, Belgioia L, Loi M, Mangoni M, Lambertini M, Morandi A. Integrating radiation therapy with targeted treatments for breast cancer: From bench to bedside. Cancer Treatment Reviews. 2022;108:102417. doi: 10.1016/j.ctrv.2022.102417
  7. Ambrose L, Stanton C, Lewis L, Lamoury G, Morgia M, Carroll S, Bromley R, Atyeo J. Potential gains: Comparison of a mono-isocentric three-­dimensional conformal radiotherapy (3D-CRT) planning technique to hybrid intensity-­modulated radiotherapy (hIMRT) to the whole breast and supraclavicular fossa (SCF) region. Journal of Medical Radiation Sciences. 2022;69(1):75–84. doi: 10.1002/jmrs.473
  8. Jagsi R, Griffith KA, Moran JM, Matuszak MM, Marsh R, Grubb M, Abu-­Isa E, Dilworth JT, Dominello MM, Heimburger D, Lack D, Walker EM, Hayman JA, Vicini F, Pierce LJ; Michigan Radiation Oncology Quality Consortium. Comparative Effectiveness Analysis of 3D-Conformal Radiation Therapy Versus Intensity Modulated Radiation Therapy (IMRT) in a Prospective Multicenter Cohort of Patients With Breast Cancer. International Journal of Radiation Oncology, Biology, Physics. 2022;112(3):643–653. doi: 10.1016/j.ijrobp.2021.09.053
  9. Kamer S, Yilmaz Susluer S, Balci Okcanoglu T, Kayabasi C, Ozmen Yelken B, Hoca S, Tavlayan E, Olacak N, Anacak Y, Olukman M, Gunduz C. Evaluation of the effect of intensity-­modulated radiotherapy (IMRT) and volumetric-­modulated arc radiotherapy (VMAT) techniques on survival response in cell lines with a new radiobiological modeling. Cancer Medicine. 2023;12(19):19874–19888. doi: 10.1002/cam4.6593
  10. Tumanova K, Nidal S, Popodko A, Stolbovoy A. Most Appropriate Radiation Therapy Techniques for the Breast Cancer Treatment: Dosimetric Analysis of Three Different Radiation Therapy Methods. Radiotherapy and Clinical Oncology. 2023;26:74–97. doi: 10.31487/j.rco.2023.01.01
  11. Yan M, Gouveia AG, Cury FL, Moideen N, Bratti VF, Patrocinio H, Berlin A, Mendez LC, Moraes FY. Practical considerations for prostate hypofractionation in the developing world. Nature Reviews Urology. 2021;18(11):669–685. doi: 10.1038/s41585–021–00498–6
  12. Apisarnthanarax S, Barry A, Cao M, Czito B, DeMatteo R, Drinane M, Hallemeier CL, Koay EJ, Lasley F, Meyer J, Owen D, Pursley J, Schaub SK, Smith G, Venepalli NK, Zibari G, Cardenes H. External Beam Radiation Therapy for Primary Liver Cancers: An ASTRO Clinical Practice Guideline. Practical Radiation Oncology. 2022;12(1):28–51. doi: 10.1016/j.prro.2021.09.004
  13. Neugebauer J, Blum P, Keiler A, Süß M, Neubauer M, Moser L, Dammerer D. Brachytherapy in the Treatment of Soft-­Tissue Sarcomas of the Extremities — A Current Concept and Systematic Review of the Literature. Cancers (Basel). 2023;15(4):1133. doi: 10.3390/cancers15041133
  14. Peng X, Wei Z, Gerweck LE. Making radiation therapy more effective in the era of precision medicine. Precision Clinical Medicine. 2020;3(4):272–283. doi: 10.1093/pcmedi/pbaa038
  15. Goodburn RJ, Philippens MEP, Lefebvre TL, Khalifa A, Bruijnen T, Freedman JN, Waddington DEJ, Younus E, Aliotta E, Meliadò G, Stanescu T, Bano W, Fatemi-­Ardekani A, Wetscherek A, Oelfke U, van den Berg N, Mason RP, van Houdt PJ, Balter JM, Gurney-­Champion OJ. The future of MRI in radiation therapy: Challenges and opportunities for the MR community. Magnetic Resonance in Medicine. 2022;88(6):2592–2608. doi: 10.1002/mrm.29450
  16. Vyas V, Palmer L, Mudge R, Jiang R, Fleck A, Schaly B, Osei E, Charland P. On bolus for megavoltage photon and electron radiation therapy. Medical Dosimetry. 2013;38(3):268–273. doi: 10.1016/j.meddos.2013.02.007
  17. Ma CM, Ding M, Li JS, Lee MC, Pawlicki T, Deng J. A comparative dosimetric study on tangential photon beams, intensity-­modulated radiation therapy (IMRT) and modulated electron radiotherapy (MERT) for breast cancer treatment. Physics in Medicine and Biology. 2003;48(7):909–924. doi: 10.1088/0031–9155/48/7/308
  18. Van Eeden L, Sachse KN, Du Plessis FCP. Practical Dosimetry Considerations for Small MLC-Shaped Electron Fields at 60 cm SSD. Journal of Biomedical Physics and Engineering. 2022;12(1):101–108. doi: 10.31661/jbpe.v0i0.2004–1097
  19. Ronga MG, Cavallone M, Patriarca A, Leite AM, Loap P, Favaudon V, Créhange G, De Marzi L. Back to the Future: Very High-­Energy Electrons (VHEEs) and Their Potential Application in Radiation Therapy. Cancers (Basel). 2021;13(19):4942. doi: 10.3390/cancers13194942
  20. Schüler E, Acharya M, Montay-­Gruel P, Loo BW Jr, Vozenin MC, Maxim PG. Ultra-high dose rate electron beams and the FLASH effect: From preclinical evidence to a new radiotherapy paradigm. Medical Physics. 2022;49(3):2082–2095. doi: 10.1002/mp.15442
  21. Carlos-­Reyes A, Muñiz-­Lino MA, Romero-­Garcia S, López-­Camarillo C, Hernández-de la Cruz ON. Biological Adaptations of Tumor Cells to Radiation Therapy. Frontiers in Oncology. 2021;11:718636. doi: 10.3389/fonc.2021.718636
  22. Russ E, Davis CM, Slaven JE, Bradfield DT, Selwyn RG, Day RM. Comparison of the Medical Uses and Cellular Effects of High and Low Linear Energy Transfer Radiation. Toxics. 2022;10(10):628. doi: 10.3390/toxics10100628
  23. Kalholm F, Grzanka L, Traneus E, Bassler N. A systematic review on the usage of averaged LET in radiation biology for particle therapy. Radiotherapy and Oncology. 2021;161:211–221. doi: 10.1016/j.radonc.2021.04.007
  24. Roobol SJ, van den Bent I, van Cappellen WA, Abraham TE, Paul MW, Kanaar R, Houtsmuller AB, van Gent DC, Essers J. Comparison of High- and Low-­LET Radiation-­Induced DNA Double-­Strand Break Processing in Living Cells. International Journal of Molecular Sciences. 2020;21(18):6602. doi: 10.3390/ijms21186602
  25. Li CY. Non-canonical roles of apoptotic and DNA double-­strand break repair factors in mediating cellular response to ionizing radiation. International Journal of Radiation Biology. 2023;99(6):915–924. doi: 10.1080/09553002.2021.1948139
  26. Zhao B, Rothenberg E, Ramsden DA, Lieber MR. The molecular basis and disease relevance of non-homologous DNA end joining. Nature Reviews Molecular Cell Biology. 2020;21(12):765–781. doi: 10.1038/s41580-020-00297-8
  27. Smith EAK, Winterhalter C, Underwood TSA, Aitkenhead AH, Richardson JC, Merchant MJ, Kirkby NF, Kirby KJ, Mackay RI. A Monte Carlo study of different LET definitions and calculation parameters for proton beam therapy. Biomedical Physics & Engineering Express. 2021;8(1):10.1088/2057–1976/ac3f50. doi: 10.1088/2057–1976/ac3f50
  28. Nikitaki Z, Velalopoulou A, Zanni V, Tremi I, Havaki S, Kokkoris M, Gorgoulis VG, Koumenis C, Georgakilas AG. Key biological mechanisms involved in high-­LET radiation therapies with a focus on DNA damage and repair. Expert Reviews in Molecular Medicine. 2022;24: e15. doi: 10.1017/erm.2022.6
  29. Sergey Koryakin, Kirill Petrushin, Mikhail Parshenkov, Zhanna Uruskhanova, Anastasiia Shchitkova, Elizabeth Pechnikova, Grigory Demyashkin. Kidney morphofunctional features after ascorbic acid administration in a model of acute radiation nephropathy. RUDN Journal of Medicine. 2024;28(3):301–310. doi: 10.22363/2313-0245-2024-28-3-37358. (In Russian)
  30. Buonanno M, Gonon G, Pandey BN, Azzam EI. The intercellular communications mediating radiation-­induced bystander effects and their relevance to environmental, occupational, and therapeutic exposures. International Journal of Radiation Biology. 2023;99(6):964–982. doi: 10.1080/09553002.2022.2078006
  31. Svendsen K, Guénot D, Svensson JB, Petersson K, Persson A, Lundh O. A focused very high energy electron beam for fractionated stereotactic radiotherapy. Scientific Reports. 2021;11(1):5844. doi: 10.1038/s41598-021-85451-8
  32. Ghorbani M, Tabatabaei ZS, Vejdani Noghreiyan A, Vosoughi H, Knaup C. Effect of tissue composition on dose distribution in electron beam radiotherapy. Journal of Biomedical Physics and Engineering. 2015;5(1):15–24.
  33. Akbarpoor R, Khaledi N, Wang X, Samiei F. Optimization of low-energy electron beam production for superficial cancer treatments by Monte Carlo code. Journal of Cancer Research and Therapeutics. 2019;15(3):475–479. doi: 10.4103/jcrt.JCRT_203_18
  34. Böhlen TT, Germond JF, Desorgher L, Veres I, Bratel A, Landström E, Engwall E, Herrera FG, Ozsahin EM, Bourhis J, Bochud F, Moeckli R. Very high-energy electron therapy as light-­particle alternative to transmission proton FLASH therapy — An evaluation of dosimetric performances. Radiotherapy and Oncology. 2024;194:110177. doi: 10.1016/j.radonc.2024.110177
  35. Böhlen TT, Germond JF, Traneus E, Bourhis J, Vozenin MC, Bailat C, Bochud F, Moeckli R. Characteristics of very high-energy electron beams for the irradiation of deep-seated targets. Medical Physics. 2021;48(7):3958–3967. doi: 10.1002/mp.14891
  36. Kim MM, Zou W. Ultra-high dose rate FLASH radiation therapy for cancer. Medical Physics. 2023;50(Suppl 1):58–61. doi: 10.1002/mp.16271
  37. Friedl AA, Prise KM, Butterworth KT, Montay-­Gruel P, Favaudon V. Radiobiology of the FLASH effect. Medical Physics. 2022;49(3):1993–2013. doi: 10.1002/mp.15184
  38. Rosenberger P, Dagar R, Zhang W, Sousa-­Castillo A, Neuhaus M, Cortes E, Maier SA, Costa-­Vera C, Kling MF, Bergues B. Imaging elliptically polarized infrared near-fields on nanoparticles by strong-­field dissociation of functional surface groups. The European Physical Journal D: Atomic, Molecular, Optical and Plasma Physics. 2022;76(6):109. doi: 10.1140/epjd/s10053-022-00430-6
  39. Ali I, Alsbou N, Ahmad S. Quantitative evaluation of dosimetric uncertainties in electron therapy by measurement and calculation using the electron Monte Carlo dose algorithm in the Eclipse treatment planning system. Journal of Applied Clinical Medical Physics. 2022;23(1): e13478. doi: 10.1002/acm2.13478
  40. Jeynes JCG, Wordingham F, Moran LJ, Curnow A, Harries TJ. Monte Carlo simulations of heat deposition during photothermal skin cancer therapy using nanoparticles. Biomolecules. 2019;9(8):343. doi: 10.3390/biom9080343
  41. Whitmore L, Mackay RI, van Herk M, Jones JK, Jones RM. Focused VHEE (very high energy electron) beams and dose delivery for radiotherapy applications. Scientific Reports. 2021;11(1):14013. doi: 10.1038/s41598-021-93276-8
  42. Ronga MG, Deut U, Bonfrate A, Marzi L. Very high-energy electron dose calculation using the Fermi-­Eyges theory of multiple scattering and a simplified pencil beam model. Medical Physics. 2023;50(12):8009–8022. doi: 10.1002/mp.16697
  43. Klimpki G, Zhang Y, Fattori G, Psoroulas S, Weber DC, Lomax A, Meer D. The impact of pencil beam scanning techniques on the effectiveness and efficiency of rescanning moving targets. Physics in Medicine and Biology. 2018;63(14):145006. doi: 10.1088/1361–6560/aacd27
  44. Zhu J, Penfold SN. Dosimetric comparison of stopping power calibration with dual-energy CT and single-­energy CT in proton therapy treatment planning. Medical Physics. 2016;43(6):2845–2854. doi: 10.1118/1.4948683
  45. An C, Zhang W, Dai Z, Li J, Yang X, Wang J, Nie Y. Optimizing focused very-high-energy electron beams for radiation therapy based on Monte Carlo simulation. Scientific Reports. 2024;14(1):27495. doi: 10.1038/s41598-024-79187-4
  46. Fan X, Niemira B. Gamma Irradiation. In: Electromagnetic Technologies in Food Science. Wiley Editors: Vicente M. Gómez-­López, Rajeev Bhat. 2021. doi: 10.1002/9781119759522.ch3
  47. Tarim U, Gurler O, Korkmaz L. Monte Carlo simulation for the interaction characteristics of gamma-rays with several tissues and water as a tissue substitute. Radiation Effects and Defects in Solids. 2023;178(7):799–807. doi: 10.1080/10420150.2023.2184364
  48. Becker D, Kumar A, Adhikary A, Sevilla M. Gamma- and Ion-beam DNA Radiation Damage: Theory and Experiment. In: Radiation Chemistry: From Basic to Applications. 1st ed. Cambridge: Royal Society of Chemistry; 2020:426–455. doi: 10.1039/9781839162541-00426
  49. Karmaker N, Maraz K, Islam F, Haque M, Razzak M, Mollah MZI, Faruque MRI, Khan RA. Fundamental characteristics and application of radiation. GSC Advanced Research and Reviews. 2021;7(1):1–12. doi: 10.30574/GSCARR.2021.7.1.0043
  50. Bell BI, Vercellino J, Brodin NP, Velten C, Nanduri LSY, Nagesh PKB, Tanaka KE, Fang Y, Wang Y, Macedo R, English J, Schumacher MM, Duddempudi PK, Asp P, Koba W, Shajahan S, Liu L, Tomé WA, Yang WL, Kolesnick R, Guha C. Orthovoltage X-rays exhibit increased efficacy compared with γ-rays in preclinical irradiation. Cancer Research. 2022;82(15):2678–2691. doi: 10.1158/0008-5472.CAN‑22-0656
  51. Zdora M. Principles of X-ray Imaging. In: X-ray Phase-­Contrast Imaging Using Near-­Field Speckles. Cham: Springer; 2021:23–48.
  52. Khaledi N, Khan R, Gräfe JL. Historical progress of stereotactic radiation surgery. Journal of Medical Physics. 2023;48(4):312–327. doi: 10.4103/jmp.jmp_62_23
  53. Park HR, Jeong SS, Kim JH, Myeong HS, Park HJ, Park KH, Park K, Yoon BW, Park S, Kim JW, Chung HT, Kim DG, Paek SH. Long-term outcome of unilateral acoustic neuromas with or without hearing loss: Over 10 years and beyond after gamma knife radiosurgery. Journal of Korean Medical Science. 2023;38(40): e332. doi: 10.3346/jkms.2023.38.e332
  54. Nesvick CL, Graffeo CS, Brown PD, Link MJ, Stafford SL, Foote RL, Laack NN, Pollock BE. The role of biological effective dose in predicting obliteration after stereotactic radiosurgery of cerebral arteriovenous malformations. Mayo Clinic Proceedings. 2021;96(5):1157–1164. doi: 10.1016/j.mayocp.2020.09.041
  55. Al Saiegh F, Liu H, El Naamani K, Mouchtouris N, Chen CJ, Khanna O, Abbas R, Velagapudi L, Baldassari MP, Reyes M, Schmidt RF, Tjoumakaris S, Gooch MR, Rosenwasser RH, Shi W, Jabbour P. Frameless angiography-­based gamma knife stereotactic radiosurgery for cerebral arteriovenous malformations: A proof-of-concept study. World Neurosurgery. 2022;164: e808‑e813. doi: 10.1016/j.wneu.2022.05.046
  56. Piwowarska-­Bilska H, Kurkowska S, Birkenfeld B. Individu­alization of radionuclide therapies: challenges and prospects. Cancers (Basel). 2022;14(14):3418. doi: 10.3390/cancers14143418
  57. Barrus J, Fernando K, Addington M, Lenards N, Hunzeker A, Konieczkowski DJ. Robust VMAT treatment planning for extremity soft tissue sarcomas. Medical Dosimetry. 2023;48(4):256–260. doi: 10.1016/j.meddos.2023.06.001
  58. Rezaee M, Adhikary A. The effects of particle LET and fluence on the complexity and frequency of clustered DNA damage. DNA (Basel). 2024;4(1):34–51. doi: 10.3390/dna4010002
  59. Kumar S, Suman S, Angdisen J, Moon BH, Kallakury BVS, Datta K, Fornace AJ Jr. Effects of high-linear-­energy-transfer heavy ion radiation on intestinal stem cells: implications for gut health and tumorigenesis. Cancers (Basel). 2024;16(19):3392. doi: 10.3390/cancers16193392
  60. Ou X, Chen X, Xu X, Xie L, Chen X, Hong Z, Bai H, Liu X, Chen Q, Li L, Yang H. Recent development in X-ray imaging technology: future and challenges. Research. 2021;2021:9892152. doi: 10.34133/2021/9892152
  61. Lu L, Sun M, Lu Q, Wu T, Huang B. High energy X-ray radiation sensitive scintillating materials for medical imaging, cancer diagnosis and therapy. Nano Energy. 2021;79:105437. doi: 10.1016/j.nanoen.2020.105437
  62. Malinowski M. Using X-ray technology to sterilize medical devices. American Journal of Biomedical Science & Research. 2021;12. doi: 10.34297/AJBSR.2021.12.001755
  63. Egwonor LI, Aworinde OR, Lekan OK, Osemudiamhen DA. Medical imaging: A critical review on X-ray imaging for the detection of infection. Journal of Infection Imaging. 2024. doi: 10.1007/s44174-024-00212-1
  64. Garnett R. A comprehensive review of dual-energy and multi-­spectral computed tomography. Clinical Imaging. 2020;67:160–169. doi: 10.1016/j.clinimag.2020.07.030
  65. Omar A, Andreo P, Poludniowski G. A model for the energy and angular distribution of X rays emitted from an X-ray tube. Part I. Bremsstrahlung production. Medical Physics. 2020;47(10):4763–4774. doi: 10.1002/mp.14359
  66. Wong LWW, Shi X, Karnieli A, Lim J, Kumar S, Carbajo S, Kaminer I, Wong LJ. Free-electron crystals for enhanced X-ray radiation. Light: Science and Applications. 2024;13(1):29. doi: 10.1038/s41377-023-01363-4
  67. Lisovska VV, Malykhina T. Computer simulation of the angular distribution of electrons and bremsstrahlung photons in tantalum converter. Journal of Radiation Physics and Engineering. 2020;2. doi: 10.26565/2312-4334-2020-2-07
  68. Nakano T, Akamatsu K, Tsuda M, Tujimoto A, Hirayama R, Hiromoto T, Tamada T, Ide H, Shikazono N. Formation of clustered DNA damage in vivo upon irradiation with ionizing radiation: visualization and analysis with atomic force microscopy. Proceedings of the National Academy of Sciences USA. 2022;119(33): e2119132119. doi: 10.1073/pnas.2119132119
  69. Baena-­Lopez L, Baonza A, Estella C, Herranz H. Editorial: Regulation and coordination of the different DNA damage responses and their role in tissue homeostasis maintenance. Frontiers in Cell and Developmental Biology. 2023;11:1175155. doi: 10.3389/fcell.2023.1175155
  70. Deng S, Vlatkovic T, Li M, Zhan T, Veldwijk MR, Herskind C. Targeting the DNA damage response and DNA repair pathways to enhance radiosensitivity in colorectal cancer. Cancers (Basel). 2022;14(19):4874. doi: 10.3390/cancers14194874
  71. Ren Y, Yang P, Li C, Wang WA, Zhang T, Li J, Li H, Dong C, Meng W, Zhou H. Ionizing radiation triggers mitophagy to enhance DNA damage in cancer cells. Cell Death Discovery. 2023;9(1):267. doi: 10.1038/s41420-023-01573-0
  72. Pogue BW, Zhang R, Cao X, Jia JM, Petusseau A, Bruza P, Vinogradov SA. Review of in vivo optical molecular imaging and sensing from x-ray excitation. Journal of Biomedical Optics. 2021;26(1):010902. doi: 10.1117/1.JBO.26.1.010902
  73. Lim CH, Lee J, Choi Y, Park JW, Kim HK. Advanced container inspection system based on dual-angle X-ray imaging method. Journal of Instrumentation. 2021;16: P08037. doi: 10.1088/1748-0221/16/08/P08037
  74. Flay N, Brown S, Sun W, Blumensath T, Su R. Effects of off-focal radiation on dimensional measurements in industrial cone-beam micro-­focus X-ray computed tomography systems. Precision Engineering. 2020;68:93–104. doi: 10.1016/j.precisioneng.2020.08.014
  75. Ahmed SK, Grams MP, Locher SE, McLemore LB, Sio TT, Martenson JA. Adaptation of the Stanford technique for treatment of bulky cutaneous T-cell lymphoma of the head. Practical Radiation Oncology. 2016;6(3):183–186. doi: 10.1016/j.prro.2015.10.021
  76. Schüler E, Eriksson K, Hynning E, Hancock SL, Hiniker SM, Bazalova-­Carter M, Wong T, Le QT, Loo BW Jr, Maxim PG. Very high-energy electron (VHEE) beams in radiation therapy: Treatment plan comparison between VHEE, VMAT, and PPBS. Medical Physics. 2017;44(6):2544–2555. doi: 10.1002/mp.12233
  77. Al-­Shareef JM, Abousahmeen AM, Saud MAB, Al-­Aqmar DM, Elfagieh M, Alwoddi BA, Adam AA, Eltayef NE, Saied FSB, Makki AM, Saleem AB. Comparison of photon versus electron for tumor bed boost radiotherapy post-breast conserving surgery. Journal of Medical Imaging and Radiation Sciences. 2023;54(3):421–428. doi: 10.1016/j.jmir.2023.05.003
  78. Lee VWY, Liu ACH, Cheng KW, Chiang CL, Lee VH. Dosimetric benefits of 3D-printed modulated electron bolus following lumpectomy and whole-­breast radiotherapy for left breast cancer. Medical Dosimetry. 2023;48(1):37–43. doi: 10.1016/j.meddos.2022.10.001
  79. Hussein M, Heijmen BJM, Verellen D, Nisbet A. Automation in intensity modulated radiotherapy treatment planning: A review of recent innovations. British Journal of Radiology. 2018;91(1092):20180270. doi: 10.1259/bjr.20180270
  80. Roa D, Kuo J, Moyses H, Taborek P, Tajima T, Mourou G, Tamanoi F. Fiber-optic based laser wakefield accelerated electron beams and potential applications in radiotherapy cancer treatments. Photonics. 2024;9(6):403. doi: 10.3390/photonics9060403
  81. Lazzarini C, Grittani G, Valenta P, Zymak I, Antipenkov R, Chaulagain U, Goncalves LVN, Grenfell A, Lamač M, Lorenz S, Nevrkla M, Špaček A, Šobr V, Szuba W, Bakule P, Korn G, Bulanov SV. Ultrarelativistic electron beams accelerated by terawatt scalable kHz laser. Physics of Plasmas. 2024;31(4):043106. doi: 10.1063/5.0189051
  82. Ebel K, Bald I. Low-energy (5–20 eV) electron-­induced single and double strand breaks in well-defined DNA sequences. Journal of Physical Chemistry Letters. 2022;13(22):4871–4876. doi: 10.1021/acs.jpclett.2c00684
  83. Frankl M, Macián-­Juan R. Monte Carlo simulation of secondary radiation exposure from high-energy photon therapy using an anthropomorphic phantom. Radiation Protection Dosimetry. 2016;168(4):537–545. doi: 10.1093/rpd/ncv381
  84. Romano F, Bailat C, Jorge PG, Lerch MLF, Darafsheh A. Ultra-high dose rate dosimetry: Challenges and opportunities for FLASH radiation therapy. Medical Physics. 2022;49(7):4912–4932. doi: 10.1002/mp.15649
  85. Winterhalter C, Lomax A, Oxley D, Weber DC, Safai S. A study of lateral fall-off (penumbra) optimisation for pencil beam scanning (PBS) proton therapy. Physics in Medicine and Biology. 2018;63(2):025022. doi: 10.1088/1361-6560/aaa2ad
  86. Ohsawa D, Hiroyama Y, Kobayashi A, Kusumoto T, Kitamura H, Hojo S, Kodaira S, Konishi T. DNA strand break induction of aqueous plasmid DNA exposed to 30 MeV protons at ultra-high dose rate. Journal of Radiation Research. 2022;63(2):255–260. doi: 10.1093/jrr/rrab114

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».