Построение предиктивной модели для прогнозирования цен недвижимости на основе сформированной базы данных

Обложка

Цитировать

Полный текст

Аннотация

Представлено решение актуальной задачи прогнозирования цен на недвижимость с помощью построения предиктивной модели на основе сформированной базы данных по недвижимости в Москве, размещенной на веб-сайте «Move Недвижимость». Рассмотрены существующие методы машинного обучения для решения задачи прогнозирования и применен один из них - множественная линейная регрессия. Проведен регрессионный анализ полученных результатов решения задачи прогнозирования. В качестве управляющих параметров рассматриваются 11 независимых переменных. Исследовано влияние учитываемых при построении модели переменных на результаты решения задачи прогнозирования цен на недвижимость. Определено, какие из независимых переменных оказывают наибольшее влияние на результаты работы модели. Для улучшения качества модели была осуществлена предобработка и стандартизация признаков, а также идентификация выбросов и пропусков значений при формировании базы данных. Коэффициенты модели множественной линейной регрессии определялись с помощью метода наименьших квадратов. Для оценки качества модели проводился анализ следующих параметров модели: R-квадрат, скорректированный R-квадрат, р-значение. Результатом построения предиктивной модели является полученное уравнение регрессии. Применение полученного уравнения может быть использовано для последующего учета конкретных характеристик при решении задачи прогнозирования цен на недвижимость. Показаны преимущества использования данного метода и перспективы применения полученного результата.

Об авторах

Полина Александровна Коняева

Российский университет дружбы народов

Email: 1032212116@pfur.ru
магистрант инженерной академии Москва, Россия

Ольга Александровна Салтыкова

Российский университет дружбы народов

Автор, ответственный за переписку.
Email: saltykova-oa@rudn.ru
ORCID iD: 0000-0002-3880-6662
SPIN-код: 3969-6701

кандидат физико-математических наук, доцент департамента механики и процессов управления, инженерная академия

Москва, Россия

Сергей Алексеевич Купреев

Российский университет дружбы народов

Email: kupreev-sa@rudn.ru
ORCID iD: 0000-0002-8657-2282
SPIN-код: 2287-2902

доктор технических наук, профессор департамента механики и процессов управления инженерной академии

Москва, Россия

Список литературы

  1. Alekseev G. Introduction to machine learning. Habr. 2019. (In Russ.) Available from: https://habr.com/ru/articles/448892 / (accessed: 03.27.2023).
  2. Leifer LA, Chernaya EV. Machine learning techniques for real estate mass valuation. Analysis of accuracy for various methods on the example of the appraisal of apartments. Property relations in the Russian Federation. 2020;3:32–42. (In Russ.) EDN: BQRFXJ
  3. Kok N, Koponen E-L, Martinez-Barbosa CA. Big Data in Real Estate From Manual Appraisal to Automated Valuation». The Journal of Portfolio Management. 2017; 43(6):202–211. https://doi.org/10.3905/jpm.2017.43.6.202
  4. Yasnitskiy VL. Using a neural network to solve the problem of mass real estate appraisal of city Perm. Fundamental Research. 2015;10–3:650–653. (In Russ.) EDN: UNXWSX
  5. Surkov FA, Petkova NV, Sukhovskiy SF. Neural network data analysis methods in real estate valuation. News of universities. North Caucasus region. Technical science. 2016;3:38–45. (In Russ.) https://doi.org/10.17213/0321-2653-2016-3-38-45
  6. Arefieva E.A, Kostyaev D S. Using neural NETWORKS for evaluation of market cost of real estate. News of the Tula State University. Technical science. 2017; 10:177–184. (In Russ.) EDN: ZVLGJH
  7. Vykhodtsev NA. Artificial intelligence in price estimation of real estate. Proceedings of the TUSUR University. 2021;24(1):68–72. (In Russ.) https://doi.org/10.21293/1818-0442-2021-24-1-68-72
  8. Arzamastsev SA, Bgatov MV, Kartysheva EN, Derkunsky VA, Semenchikov DN. Predicting subscriber churn: comparison of machine learning methods. Computer tools in education. 2018;5:5–23. (In Russ.) https://doi.org/10.32603/2071-2340-2018-5-5-23
  9. Radchuk MA, Kopytina EA. Development of a software tool for predicting customer churn using machine learning methods. Collection of student scientific works of the Faculty of Computer Science of VSU. 2019. p. 190–196. (In Russ.) EDN: PSWAXM
  10. Lalwani P, Mishra MK, Chadha JS, Sethi P. Customer churn prediction system: a machine learning approach. Computing. 2022;104(2):271–294. https://doi.org/10.1007/s00607-021-00908-y
  11. Khodabandehlou S, Zivari Rahman M. Comparison of supervised machine learning techniques for customer churn prediction based on analysis of customer behavior. Journal of Systems and Information Technology. 2017;19(1/2):65–93. https://doi.org/10.1108/JSIT-102016-0061
  12. Andrianova EG, Novikova OA. The role of text mining methods in automating stock market forecasting. Cloud of science. 2018;5(1):196–211. (In Russ.) EDN: YUTIIN
  13. Kovalenko IA. Use of artificial intelligence in the exchange and over-the-counter securities markets. Bulletin of Science. 2023;3(6):75–80. (In Russ.) Available from: https://www.xn----8sbempclcwd3bmt.xn--p1ai/article/ 8956 (accessed: 30.03.2023).
  14. Henrique BM, Sobreiro VA, Kimura H. Literature review: Machine learning techniques applied to financial market prediction. Expert Systems with Applications. 2019; 124:226–251. https://doi.org/10.1016/j.eswa.2019.01.012
  15. Kumbure MM, Lohrmann C, Luukka P, Porras J. Machine learning techniques and data for stock market forecasting: A literature review. Expert Systems with Applications. 2022;197:116659.
  16. Mahesh B. Machine learning algorithms-a review. International Journal of Science and Research. 2020; 9(1):381–386. https://doi.org/10.21275/ART20203995
  17. Salnikov VA, Mikheeva OM. Models for forecasting prices on the Moscow residential real estate market. Problems of forecasting. 2018;1(166):129–139. (In Russ.) EDN: YLXJZZ
  18. Sternik GM, Pechenkina AV. Forecast of supply prices for apartments on the Moscow housing market (macroeconomic approach). Property relations in the Russian Federation. 2007;10:11–18. (In Russ.) EDN: JXADIB
  19. Nazarov A. Regression analysis in DataScience. Simple linear regression. statsmodels library. Habr. 2022. (In Russ.) Available from: https://habr.com/ru/articles690414/ (accessed: 30.03.2023).
  20. Dronov V. Linear regression using Scikit-Learn in Python. Learning Python. 2021. (In Russ.) Available from: https://tonais.ru/library/lineynaya-regressiya-s-pomo schyu-scikit-learn-v-python (accessed: 05.04.2023).
  21. Aylin А. Normalization vs. standardization in linear regression. Machine learning. 2023. Available from: https://www.baeldung.com/cs/normalization-vs-standardization (accessed: 15.04.2023).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».