Замещение костного дефекта таранной кости аутотрансплантатом, взятым из пяточной кости, с применением AMIC-технологии: клинический случай

Обложка

Цитировать

Полный текст

Аннотация

Актуальность. Вопрос выбора тактики лечения полнослойных остеохондральных дефектов таранной кости до сих пор является актуальным. При выборе тактики лечения следует учитывать два ключевых момента: восстановление архитектоники таранной кости и восстановление хрящеподобного покрытия в зоне остеохондрального дефекта в долгосрочной перспективе.

Описание клинического случая. Пациент 34 лет, физически активный, в 2011 г. получил травму голеностопного сустава, лечился консервативно. В 2020 г. усилились жалобы на боли и снижение активности. Оценка по шкалам при поступлении: ВАШ — 6 баллов, AOFAS-AHS (задний отдел стопы) — 49 баллов, FAAM — 55 баллов. На МРТ выявлен остеохондральный дефект медиального отдела купола таранной кости размером 16,4×9,4 мм и глубиной 20,8 мм. Пациенту выполнено замещение костного дефекта аутотрансплантатом, взятым из пяточной кости, с применением AMIC-технологии (методики индуцированного на матрице аутохондрогенеза). Через 6 мес. проведен контрольный осмотр, выполнена артроскопия голеностопного сустава с удалением металлофиксаторов. По данным артроскопии, зона хондропластики практически идентична интактному суставному хрящу. Через год после хондропластики пациент вернулся к прежней спортивной активности. Оценка по шкалам: ВАШ — 1 балл, AOFAS-AHS — 94 балла, FAAM — 83 балла.

Заключение. Предложенный метод позволяет восстановить архитектонику таранной кости вместе с хрящевой поверхностью. Применение костного аутотрансплантата позволяет восполнить дефект таранной кости, а укрытие аутотрансплантата коллагеновой мембраной способствует формированию в зоне дефекта гиалиноподобной хрящевой ткани.

Об авторах

Глеб Владимирович Коробушкин

ФГБУ «Национальный медицинский исследовательский центр травматологии и ортопедии им. Н.Н. Приорова» Минздрава России

Email: kgleb@mail.ru
ORCID iD: 0000-0002-9960-2911

д-р мед. наук

Россия, Москва

Багавдин Гаджиевич Ахмедов

ФГБУ «Национальный медицинский исследовательский центр хирургии им. А.В. Вишневского» Минздрава России

Email: drbagavdin@mail.ru
ORCID iD: 0000-0002-9041-9539

д-р мед. наук

Россия, Москва

Виталий Витальевич Чеботарев

ФГБУ «Национальный медицинский исследовательский центр хирургии им. А.В. Вишневского» Минздрава России

Автор, ответственный за переписку.
Email: chebotarew.vitaly@gmail.com
ORCID iD: 0009-0001-6483-3162
Россия, Москва

Арип Рашидович Гайдаров

ФГБУ «Национальный медицинский исследовательский центр хирургии им. А.В. Вишневского» Минздрава России

Email: 91gaydarov91@mail.ru
ORCID iD: 0000-0003-4295-4294
Россия, Москва

Список литературы

  1. DeBerardino T.M., Arciero R.A., Taylor D.C. Arthroscopic treatment of soft tissue impingement of the ankle in athletes. Arthroscopy. 1997;13(4):492-498. doi: 10.1016/s0749-8063(97)90129-8.
  2. Rikken Q.G.H., Kerkhoffs G.M.M.J. Osteochondral Lesions of the Talus: An Individualized Treatment Paradigm from the Amsterdam Perspective. Foot Ankle Clin. 2021;26(1):121-136. doi: 10.1016/j.fcl.2020.10.002.
  3. Shimozono Y., Yasui Y., Ross A.W., Kennedy J.G. Osteochondral lesions of the talus in the athlete: up to date review. Curr Rev Musculoskelet Med. 2017;10(1):131-140. doi: 10.1007/s12178-017-9393-8.
  4. Lan T., McCarthy H.S., Hulme C.H., Wright K.T., Makwana N. The management of talar osteochondral lesions — Current concepts. J Arthrosc Jt Surg. 2021;8(3):231-237. doi: 10.1016/j.jajs.2021.04.002.
  5. Giannini S., Buda R., Faldini C., Vannini F., Bevoni R., Grandi G. et al. Surgical treatment of osteochondral lesions of the talus in young active patients. J Bone Joint Surg Am. 2005;87 Suppl 2:28-41. doi: 10.2106/JBJS.E.00516.
  6. Verhagen R.A., Maas M., Dijkgraaf M.G.W., Tol J.L., Krips R., van Dijk C.N. Prospective study on diagnostic strategies in osteochondral lesions of the talus. Is MRI superior to helical CT? J Bone Joint Surg Br. 2005;87(1):41-46.
  7. Hepple S., Winson I.G., Glew D. Osteochondral Lesions of the Talus: A Revised Classification. Foot Ankle Int. 1999;20(12):789-793. doi: 10.1177/107110079902001206.
  8. Зейналов В.Т., Шкуро К.В. Методы лечения остеохондральных повреждений таранной кости (рассекающий остеохондрит) на современном этапе (обзор литературы). Кафедра травматологии и ортопедии. 2018;4(34):24-36. doi: 17238/issn2226-2016.2018.4.24-36. Zeinalov V.T., Shkuro K.V. Recent methods of treatment of osteochondral lesions (osteochоndritis dessicans) of the talus (Literature review). Department of Traumatology and Orthopedics. 2018;4(34):24-36. (In Russian). doi: 17238/issn2226-2016.2018.4.24-36.
  9. Айрапетов Г., Воротников А., Коновалов Е. Методы хирургического лечения локальных дефектов гиалинового хряща крупных суставов (обзор литературы). Гений ортопедии. 2017;23(4):485-491. doi: 10.18019/1028-4427-2017-23-4-485-491. Airapetov G., Vorotnikov A., Konovalov E. Surgical methods of focal hyaline cartilage defect management in large joints (literature review). Genij Ortopedii. 2017;23(4):485-491. (In Russian). doi: 10.18019/1028-4427-2017-23-4-485-491.
  10. Choi W.J., Park K.K., Kim B.S., Lee J.W. Osteochondral Lesion of the Talus. Am J Sports Med. 2009;37(10): 1974-1980. doi: 10.1177/0363546509335765.
  11. Yang H.Y., Lee K.B. Arthroscopic Microfracture for Osteochondral Lesions of the Talus: Second-Look Arthroscopic and Magnetic Resonance Analysis of Cartilage Repair Tissue Outcomes. J Bone Joint Surg Am. 2020;102(1):10-20. doi: 10.2106/JBJS.19.00208.
  12. Герасимов С.А., Тенилин Н.А., Корыткин А.А., Зыкин А.А. Хирургическое лечение ограниченных повреждений суставной поверхности: современное состояние вопроса. Политравма. 2016;(1):63-69. Gerasimov S.A., Tenilin N.A., Korytkin A.A., Zykin A.A. Surgical treatment of localized injuries to articular surface: the current state of the issue. Polytrauma. 2016;(1):63-69. (In Russian).
  13. Migliorini F., Maffulli N., Eschweiler J., Götze C., Hildebrand F., Betsch M. Prognostic factors for the management of chondral defects of the knee and ankle joint: a systematic review. Eur J Trauma Emerg Surg. 2023;49(2):723-745. doi: 10.1007/s00068-022-02155-y.
  14. Behrens P., Bitter T., Kurz B., Russlies M. Matrix-associated autologous chondrocyte transplantation/implantation (MACT/MACI) — 5-year follow-up. Knee. 2006;13(3):194-202. doi: 10.1016/j.knee.2006.02.012.
  15. Wiewiorski M., Barg A., Valderrabano V. Autologous matrix-induced chondrogenesis in osteochondral lesions of the talus. Foot and Ankle Clinics. 2013;18(1): 151-158. doi: 10.1016/j.fcl.2012.12.009.
  16. Егиазарян К.А., Лазишвили Г.Д., Ратьев А.П., Сиротин И.В., Бут-Гусаим А.Б., Данилов М.А. и др. Современные тенденции в лечении локальных хрящевых дефектов коленного сустава. Хирургическая практика. 2020;(3):65-72. doi: 10.38181/2223-2427-2020-3-65-72. Egiazaryan K.A., Lazishvili G.D., Ratyev A.P., Sirotin I.V., But-Gusaim A.B., Danilov M.A. et al. Modern trends in the treatment of local cartilage defects of the knee. Surgical Practice. 2020;(3):65-72. (In Russian). doi: 10.38181/2223-2427-2020-3-65-72.
  17. De Boer A.S., Tjioe R.J.C., Van Der Sijde F., Meuffels D.E., den Hoed P.T., Van der Vlies C.H. et al. The American Orthopaedic Foot and Ankle Society AnkleHindfoot Scale; Translation and validation of the Dutch language version for ankle fractures. BMJ Open. 2017;7(8): e017040. doi: 10.1136/bmjopen-2017-017040.
  18. Martin R.L., Irrgang J.J., Burdett R.G., Conti S.F., Van Swearingen J.M. Evidence of validity for the Foot and Ankle Ability Measure (FAAM). Foot Ankle Int. 2005;26(11):968-983. doi: 10.1177/107110070502601113.
  19. Тимофеев К.А. Дефекты таранной кости и возможности их замещения. Уральский медицинский журнал. 2022;21(2):55-58. doi: 10.52420/2071-5943-2022-21-2-55-58. Timofeev K.A. Pelvic bone defects and possibilities of their replacement. Ural Medical Journal. 2022;21(2):55-58. (In Russian). doi: 10.52420/2071-5943-2022-21-2-55-58.
  20. Корышков Н.А., Хапилин А.П., Ходжиев А.С., Воронкевич И.А., Огарёв Е.В., Симонов А.Б. и др. Мозаичная аутологичная остеохондропластика в лечении локального асептического некроза блока таранной кости. Травматология и ортопедия России. 2014; 20(4):90-98. doi: 10.21823/2311-2905-2014-0-4-90-98. Koryshkov N.A., Khapilin A.P., Khodzhiyev A.S., Voronkevich I.A., Ogarev E.V., Simonov A.B. et al. Treatment of local talus osteochondral defects using mosaic autogenous osteochondral plasty. Traumatology and Orthopedics of Russia. 2014;20(4):90-98. (In Russian). doi: 10.21823/2311-2905-2014-0-4-90-98.
  21. Chang E., Lenczner E. Osteochondritis dissecans of the talar dome treated with an osteochondral autograft. Can J Surg. 2000;43(3):217-221.
  22. Kodama N., Honjo M., Maki J., Hukuda S. Osteochondritis dissecans of the talus treated with the mosaicplasty technique: a case report. J Foot Ankle Surg. 2004;43(3): 195-198. doi: 10.1053/j.jfas.2004.03.003.
  23. Bisicchia S., Rosso F., Amendola A. Osteochondral allograft of the talus. Iowa Orthop J. 2014;34:30-37.
  24. Merritt G., Epstein J., Roland D., Bell D. Fresh osteochondral allograft transplantation (FOCAT) for definitive management of a 198 square millimeter osteochondral lesion of the talus (OLT): A case report. Foot (Edinb). 2021;46:101639. doi: 10.1016/j.foot.2019.09.001.
  25. Лазишвили Г.Д., Егиазарян К.А., Никишин Д.В., Воронцов А.А., Шпак М.А., Клинов Д.В. и др. Экспериментальное обоснование применения коллагеновых мембран для реконструкции полнослойных дефектов гиалинового хряща. Хирургическая практика. 2020;(1):45-52. doi: 10.38181/2223-2427-2020-1-45-52. Lazishvili G.D., Egiazaryan K.A., Nikishin D.V., Vorontsov A.A., Shpak M.A., Klinov D.V. et al. Experimental substantiation of the use of collagen membranes for the reconstruction of full-thickness defects in hyaline cartilage. Surgical Practice. 2020;1(41):45-52. (In Russian). doi: 10.38181/2223-2427-2020-1-45-52.
  26. Malahias M.A., Kostretzis L., Megaloikonomos P.D., Cantiller E.B., Chytas D., Thermann H. et al. Autologous matrix-induced chondrogenesis for the treatment of osteochondral lesions of the talus: A systematic review. Orthop Rev (Pavia). 2021;12(4):8872. doi: 10.4081/or.2020.8872.
  27. Migliorini F., Maffulli N., Baroncini A., Knobe M., Tingart M., Eschweiler J. Matrix-induced autologous chondrocyte implantation versus autologous matrix-induced chondrogenesis for chondral defects of the talus: a systematic review. Br Med Bull. 2021;138(1):144-154. doi: 10.1093/bmb/ldab008.
  28. Hurley E.T., Murawski C.D., Paul J., Marangon A., Prado M.P., Xu X. et al. Osteochondral Autograft: Proceedings of the International Consensus Meeting on Cartilage Repair of the Ankle. Foot Ankle Int. 2018;39 (1 suppl):28S-34S. doi: 10.1177/1071100718781098.
  29. Hangody L., Füles P. Autologous osteochondral mosaicplasty for the treatment of full- thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg Am. 2003;85-A Suppl 2:25-32. doi: 10.2106/00004623-200300002-00004.
  30. Пашкова Е., Сорокин Е., Коновальчук Н., Фомичев В., Шулепов Д., Демьянова К. Ретроспективный анализ результатов оперативного лечения пациентов с остеохондральными повреждениями блока таранной кости. Гений ортопедии. 2022;28(5):643-651. doi: 10.18019/1028-4427-2022-28-5-643-651. Pashkova E., Sorokin E., Konovalchuk N., Fomichev V., Shulepov D., Demyanova K. Retrospective analysis of the results of surgical treatment of patients with osteochondral lesions of the talar dome. Genij Ortopedii. 2022;28(5):643-651. (In Russian). doi: 10.18019/1028-4427-2022-28-5-643-651.
  31. Кузнецов В.В., Пахомов И.А., Корочкин С.Б., Репин А.В., Гуди С.М. Способ забора остеохондрального аутотрансплантата из преахиллярной области пяточной кости. Современные проблемы науки и образования. 2017;(5). Режим доступа: https://science-education.ru/ru/article/view?id=27105&ysclid=lpl5n1sy70942901269. Kuznetsov V.V., Pakhomov I.A., Korochkin S.B., Repin A.V., Gudi S.M. Osteochondral graft from the pre-Achilles for repair of ankle joint articular surface defects and lessions. Modern Problems of Science and Education. 2017;(5). Available from: https://science-education.ru/ru/article/view?id=27105&ysclid=lpl5n1sy70942901269. (In Russian).
  32. Waltenspül M., Meisterhans M., Ackermann J., Wirth S. Typical Complications After Cartilage Repair of the Ankle Using Autologous Matrix-Induced Chondrogenesis (AMIC). Foot Ankle Orthop. 2023;8(1): 24730114231164150. doi: 10.1177/24730114231164150.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. МРТ левого голеностопного сустава, мультипланарная реконструкция (Т2-взвешенное изображение): a — фронтальная плоскость; b — сагиттальная плоскость

Скачать (103KB)
3. Рис. 2. Удаление измененной костно-хрящевой ткани: а — интраоперационное фото; b — флюороскопическая картина

Скачать (130KB)
4. Рис. 3. Замещение дефекта костным аутотрансплантатом: a — вид аутотрансплантата, помещенного в зону остеохондрального дефекта; b — после заполнения дефекта стерильная фольга смоделирована в соответствии с размером костно-хрящевого дефекта; с — коллагеновая мембрана после нанесения фибринового геля с клеющей способностью помещена в зону остеохондрального дефекта; d — рентгенологический контроль голеностопного сустава после фиксации медиальной лодыжки винтами

Скачать (216KB)
5. Рис. 4. Артроскопия голеностопного сустава и удаление металлофиксаторов: а, b — визуализирован медиальный отдел купола таранной кости в месте проведения хондропластики; c, d — место трансплантации представлено тканью, визуально похожей на неповрежденный хрящ, фиксированный к нижележащей кости

Скачать (273KB)
6. Рис. 5. МРТ через 12 мес. после операции (Т2-взвешенное изображение): полная костно-хрящевая интеграция аутотрансплантата и коллагеновой мембраны

Скачать (101KB)

© Эко-Вектор, 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».