Comparative Biomechanical Analysis of Ankle Arthrodesis Techniques: Experimental Study

封面

如何引用文章

详细

Background. Despite the existing significant number of various techniques for ankle arthrodesis, a number of authors point to certain technical difficulties of these operations, the loss of the talus and tibia position during ankylosing, nonunion. The problem of the ankle arthrodesis technique improving requires new solutions.

The aim of the study was to compare the stability of various fixation systems in ankle arthrodesis by the finite element method.

Methods. The finite element method was used to evaluate the biomechanical characteristics of three variants of ankle arthrodesis systems: three cancellous screws, the originally designed plate combined with two cancellous screws, when the screw in the proximal plate’s hole is cortical, and the same plate combined with two cancellous screws, when the screw in the proximal plate’s hole with angular stability. The stresses and strains under the application of various types of loads are studied.

Results. In the anterior plate ankle fixation model combined with two cancellous screws and a proximal cortical screw, the implants and the talus experienced the least stresses compared to the other two models. Thus, the maximum equivalent stress in implants in the second variant was 68-124 MPa, in the first variant 92-147 MPa, in the third variant — 130-331 MPa. The equivalent stress in the talus in the second version of fixation ranged from 20 to 46 MPa, in the first and third versions — 28-58 MPa and 47-65 MPa, respectively. The indicators of maximum contact pressure at the border of the tibia and talus turned out to be the highest in the first variant compared to the other two models (34 MPa, 31 MPa and 31 MPa, respectively).

Conclusions. Among the studied ankle fixation systems for arthrodesis, an anterior plate combined with two cancellous screws and a proximal cortical screw is the most preferable in terms of biomechanics.

作者简介

Vladimir Khominets

Kirov Military Medical Academy

编辑信件的主要联系方式.
Email: khominets_62@mail.ru
ORCID iD: 0000-0001-9391-3316

Dr. Sci. (Med.), Professor

俄罗斯联邦, St. Petersburg

Sergey Mikhailov

基洛夫軍事醫學院

Email: msv06@mail.ru
ORCID iD: 0000-0002-0098-8085

Cand. Sci. (Med.)

俄罗斯联邦, St. Petersburg

Sayan Zhumagaziev

Kirov Military Medical Academy

Email: shumagasiev@mail.ru
ORCID iD: 0000-0002-5169-2022
俄罗斯联邦, St. Petersburg

Alexey Shchukin

Kirov Military Medical Academy

Email: ossa.76@mail.ru
ORCID iD: 0000-0001-7754-8478

Cand. Sci. (Med.)

俄罗斯联邦, St. Petersburg

Dmitry Ivanov

Chernyshevsky Saratov National Research State University

Email: ivanovdv.84@ya.ru
ORCID iD: 0000-0003-1640-6091

Cand. Sci. (Phys.-Math.)

俄罗斯联邦, Saratov

参考

  1. Morash J., Walton D.M., Glazebrook M. Ankle Arthrodesis Versus Total Ankle Arthroplasty. Foot Ankle Clin. 2017;22(2):251-266. doi: 10.1016/j.fcl.2017.01.013.
  2. Prissel M.A., Simpson G.A., Sutphen S.A., Hyer C.F., Berlet G.C. Ankle Arthrodesis: A Retrospective Analysis Comparing Single Column, Locked Anterior Plating to Crossed Lag Screw Technique. J Foot Ankle Surg. 2017;56(3):453-456. doi: 10.1053/j.jfas.2017.01.007.
  3. Suo H., Fu L., Liang H., Wang Z., Men J., Feng W. End-stage Ankle Arthritis Treated by Ankle Arthrodesis with Screw Fixation Through the Transfibular Approach: A Retrospective Analysis. Orthop Surg. 2020;12(4):1108-1119. doi: 10.1111/os.12707.
  4. DeHeer P.A., Catoire S.M., Taulman J., Borer B. Ankle arthrodesis: a literature review. Clin Podiatr Med Surg. 2012;29(4):509-527. doi: 10.1016/j.cpm.2012.07.001.
  5. Somberg A.M., Whiteside W.K., Nilssen E., Murawski D., Liu W. Biomechanical evaluation of a second generation headless compression screw for ankle arthrodesis in a cadaver model. Foot Ankle Surg. 2016;22(1):50-54. doi: 10.1016/j.fas.2015.04.010.
  6. Mikhaylov K.S., Emelyanov V.G., Tikhilov R.M., Kochish A.Yu., Sorokin E.P. [Substantiation of surgery method in patient with ankle osteoarthritis: arthrodesis or arthroplasty]. Travmatologiya i ortopediya Rossii [Traumatology and orthopedics of Russia]. 2016;(1):21-32. (In Russian). doi: 10.21823/2311-2905-2016-0-1-21-32.
  7. Khominets V.V., Mikhailov S.V., Shakun D.A., Shumagaziev S.E., Komarov A.V. [Ankle Arthrodesis with Three Cancellous Screws]. Travmatologiya i ortopediya Rossii [Traumatology and Orthopedics of Russia]. 2018;24(2):117-126. (In Russian). doi: 10.21823/2311-2905-2018-24-2-117-126.
  8. Onodera T., Majima T., Kasahara Y., Takahashi D., Yamazaki S., Ando R. et al. Outcome of transfibular ankle arthrodesis with Ilizarov apparatus. Foot Ankle Int. 2012;33:964-968.
  9. Teramoto A. Nozaka K., Kamiya T., Kashiwagura T., Shoji H., Watanabe K. et al. Screw Internal Fixation and Ilizarov External Fixation: A Comparison of Outcomes in Ankle Arthrodesis. J Foot Ankle Surg. 2020;59(2):343-346. doi: 10.1053/j.jfas.2019.09.012.
  10. Heuvel S.B.M., Doorgakant A., Birnie M.F.N., Blundell C.M., Schepers T. Open Ankle Arthrodesis: a Systematic Review of Approaches and Fixation Methods. Foot Ankle Surg. 2021;27(3):339-347. doi: 10.1016/j.fas.2020.12.011.
  11. Steginsky B.D., Suhling M.L., Vora A.M. Ankle Arthrodesis With Anterior Plate Fixation in Patients at High Risk for Nonunion. Foot Ankle Spec. 2020;13(3):211-218. doi: 10.1177/1938640019846968.
  12. van den Heuvel S.B.M., Penning D., Schepers T. Open Ankle Arthrodesis: A Retrospective Analysis Comparing Different Fixation Methods. J Foot Ankle Surg. 2022;61(2):233-238. doi: 10.1053/j.jfas.2021.07.012.
  13. Ross B.J., Savage-Elliott I., Wu V.J., Rodriguez R.F. Complications Following Total Ankle Arthroplasty Versus Ankle Arthrodesis for Primary Ankle Osteoarthritis. Foot Ankle Spec. 2021:1938640020987741. doi: 10.1177/1938640020987741.
  14. Zwipp H., Rammelt S., Endres T., Heineck J. High union rates and function scores at midterm followup with ankle arthrodesis using a four screw technique. Clin Orthop Relat Res. 2010;468(4):958-968. doi: 10.1007/s11999-009-1074-5.
  15. Clifford C., Berg S., McCann K., Hutchinson B. A biomechanical comparison of internal fixation techniques for ankle arthrodesis. J Foot Ankle Surg. 2015;54(2):188-191. doi: 10.1053/j.jfas.2014.06.002.
  16. Gutteck N., Martin H., Hanke T., Matthies J.B., Heilmann A., Kielstein H. et al. Posterolateral plate fixation with Talarlock® is more stable than screw fixation in ankle arthrodesis in a biomechanical cadaver study. Foot Ankle Surg. 2018;24(3):208-212.
  17. Dubrov V.E., Zyuzin D.A., Kuzkin I.A., Shcherbakov I.M., Donchenko S.V., Saprykina K.A. [Finite element modelling of biologic system in orthopedic trauma]. Rossiiskii zhurnal biomekhaniki [Russian Journal of Biomechanics]. 2019;23(1):140-152. (In Russian). doi: 10.15593/RZhBiomeh/2019.1.12.
  18. Wang S., Yu J., Ma X., Zhao D., Geng X., Huang J., Wang X. Finite element analysis of the initial stability of arthroscopic ankle arthrodesis with three-screw fixation: posteromedial versus posterolateral home-run screw. J Orthop Surg Res. 2020;15(1):252. doi: 10.1186/s13018-020-01767-7.
  19. Zhu M., Yuan C.S., Jin Z.M., Wang Y.J., Shi Y.X., Yang Z.J. et al. Initial stability and stress distribution of ankle arthroscopic arthrodesis with three kinds of 2-screw configuration fixation: a finite element analysis. J Orthop Surg Res. 2018;13(1):263. doi: 10.1186/s13018-018-0972-1.
  20. Dol A.V., Dol E.S., Ivanov D.V. [Biomechanical modelling of surgical reconstructive treatment of spinal spondylolisthesis at l4–l5 level]. Rossiiskii zhurnal biomekhaniki [Russian Journal of Biomechanics]. 2018;22(1):31-44. (In Russian). doi: 10.15593/RZhBiomeh/2018.1.03.
  21. Wehner T., Claes L., Simon U. Internal loads in the human tibia during gait. Clin Biomech (Bristol, Avon). 2009;24(3):299-302. doi: 10.1016/j.clinbiomech.2008.12.007.
  22. López-Campos J.A., Segade A., Casarejos E., Fernández J.R., Vilán J.A., Izquierdo P. Finite Element Study of a Threaded Fastening: The Case of Surgical Screws in Bone. Symmetry. 2018;10(8):335. doi: 10.3390/sym10080335.
  23. Ivanov D.V., Dol A.V. [Biomechanical Modeling]. Saratov: Amirite, 2021. 250 p.
  24. Zherebtsov S., Salishchev G., Galeyev R., Maekawa K. Mechanical Properties of Ti–6Al–4V Titanium Alloy with Submicrocrystalline Structure Produced by Severe Plastic Deformation. Materials Transactions. 2005;46(9):2020-2025. doi: 10.2320/matertrans.46.2020.
  25. Nasson S., Shuff C., Palmer D., Owen J., Wayne J., Carr J. et al. Biomechanical comparison of ankle arthrodesis techniques: crossed screws vs. blade plate. Foot Ankle Int. 2001;22(7):575-580. doi: 10.1177/107110070102200708.
  26. Friedman R.L., Glisson R.R., Nunley J.A. A biomechanical comparative analysis of two techniques for tibiotalar arthrodesis. Foot Ankle Int. 1994;15(6):301-305. doi: 10.1177/107110079401500604.
  27. Miller R.A., Firoozbakhsh K., Veitch A.J. A biomechanical evaluation of internal fixation for ankle arthrodesis comparing two methods of joint surface preparation. Orthopedics. 2000;23(5):457-460. doi: 10.3928/0147-7447-20000501-14.
  28. Erdemir A., Guess T.M., Halloran J., Tadepalli S.C., Morrison T.M. Considerations for reporting finite element analysis studies in biomechanics. J Biomech. 2012;45(4):625-633. doi: 10.1016/j.jbiomech.2011.11.038.
  29. Kluess D., Wieding J., Souffrant R., Mittelmeier W., Bader R. Finite element analysis in orthopaedic biomechanics. In: Moratal D., ed. Finite Element Analysis. València; 2010. p. 151-170.
  30. Vázquez A.A., Lauge-Pedersen H., Lidgren L., Taylor M. Finite element analysis of the initial stability of ankle arthrodesis with internal fixation: flat cut versus intact joint contours. Clin Biomech (Bristol, Avon). 2003;18(3):244-253. doi: 10.1016/s0268-0033(02)00207-3.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Anterior plate for ankle arthrodesis

下载 (12KB)
3. Fig. 2. 3D models in two projections (frontal and lateral) of ankle arthrodesis: a — with three cancellous screws; b — the originally designed plate and two cancellous screws, the proximal screw is cortical; c — the originally designed plate and two cancellous screws, proximal screw with angular stability 1 — cancellous screw, 2 — cortical screw, 3 — screw with angular stability

下载 (62KB)
4. Fig. 3. The axes of the model coordinate system, relative to which the external loads were set: a — side view; b — top view

下载 (34KB)
5. Fig. 4. Maximum equivalent stresses for various types loads of on the ankle joint, MPa: a — in the studied implants; b — in the talus; c — in the tibia

下载 (105KB)
6. Fig. 5. Contact pressure at the border of the tibia and talus when using various options for fixation and loads on the ankle, MPa

下载 (41KB)
7. Fig. 6. Total displacement fields for three models of dorsiflexion fixation, mm: a — three cancellous screws; b — the plate and two cancellous screws, the proximal screw is cortical; c — the plate and two cancellous screws, proximal screw with angular stability

下载 (26KB)
8. Fig. 7. Equivalent stress fields for dorsiflexion models, MPa: a — three cancellous screws; b — the plate and two cancellous screws, the proximal screw is cortical; c — the plate and two cancellous screws, proximal screw with angular stability

下载 (50KB)
9. Fig. 8. Equivalent stresses in the talus during loading simulating dorsiflexion of the foot, MPa: a — three cancellous screws; b — the plate and two cancellous screws, the proximal screw is cortical; c — the plate and two cancellous screws, proximal screw with angular stability

下载 (59KB)
10. Fig. 9. Equivalent stresses in the tibia during a load simulating dorsiflexion of the foot, MPa: a — second option; b — third option

下载 (31KB)

版权所有 © Mikhailov S., 2022

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».