COMPARATIVE ANALYSIS OF PHYSICAL-CHEMICAL PROPERTIES OF LARCH AND PINE BARK: THERMAL ANALYSIS AND ANALYTICAL PYROLYSIS
- Authors: Petrunina E.A.1, Loskutov S.R.1, Ryazanova T.V.2, Aniskina A.A.1, Permyakova G.V.1, Stasova V.V.1
-
Affiliations:
- V. N. Sukachev Institute of Forest, Russian Academy of Science, Siberian Branch Federal Research Center Krasnoyarsk Scientific Center, Russian Academy of Sciences, Siberian Branch
- Reshetnev Siberian State University of Science and Technology
- Issue: No 4 (2022)
- Pages: 35-49
- Section: RESEARCH ARTICLES
- URL: https://bakhtiniada.ru/2311-1410/article/view/350163
- DOI: https://doi.org/10.15372/SJFS20220405
- ID: 350163
Cite item
Full Text
Abstract
The study focuses on the thermal analysis and flash pyrolysis of bark of Siberian larch ( Larix sibirica Ledeb.) and Scots pine ( Pinus sylvestris L.). Using thermogravimetry (TG/DTG) and differential scanning calorimetry (DSC), a number of patterns of thermal decomposition of bark were established. The fourth derivatives of the DTG contours revealed differences in the “fractionality” of mass loss during heating of the bark samples. The thermal decomposition kinetics of bark was investigated using the Ozawa - Flynn - Wall isoconversion method. The obtained dependence of the activation energy ( E a) on the conversion degree was used to calculate the thermodynamic parameters (Δ H , Δ G and Δ S ) of thermal decomposition. The mean values of E a, Δ H , Δ G and Δ S were 206.7, 201.1, 248.7 kJ/mol and -78.0 J/(mol×K) for larch bark (LB) and 235.3, 229.7, 310.6 kJ/mol and -129.4 J/(mol×K) for pine bark (PB). The composition of mono-, sesqui-, diterpenes and oxygen-containing hydrocarbons of bark was determined by headspace GC/MS analysis. 37 and 41 volatile organic compounds were identified for LB and PB, respectively. The thermal stability of LB and PB was characterized using recalcitrant indices calculated from TG and DSC data. Integral values of exothermic effects of thermo-oxidative degradation were 15.1 kJ/g for LB and 15.9 kJ/g for PB. 55 flash pyrolysis products were identified, which accounted for 77.6 % of the total peak area for LB and 89.7 % for PB.
Keywords
About the authors
E. A. Petrunina
V. N. Sukachev Institute of Forest, Russian Academy of Science, Siberian Branch Federal Research Center Krasnoyarsk Scientific Center, Russian Academy of Sciences, Siberian Branch
Email: petrunina@ksc.krasn.ru
Krasnoyarsk, Russian Federation
S. R. Loskutov
V. N. Sukachev Institute of Forest, Russian Academy of Science, Siberian Branch Federal Research Center Krasnoyarsk Scientific Center, Russian Academy of Sciences, Siberian Branch
Email: lsr@ksc.krasn.ru
Krasnoyarsk, Russian Federation
T. V. Ryazanova
Reshetnev Siberian State University of Science and Technology
Email: tatyana-htd09@mail.ru
Krasnoyarsk, Russian Federation
A. A. Aniskina
V. N. Sukachev Institute of Forest, Russian Academy of Science, Siberian Branch Federal Research Center Krasnoyarsk Scientific Center, Russian Academy of Sciences, Siberian Branch
Email: aniskina_a@ksc.krasn.ru
Krasnoyarsk, Russian Federation
G. V. Permyakova
V. N. Sukachev Institute of Forest, Russian Academy of Science, Siberian Branch Federal Research Center Krasnoyarsk Scientific Center, Russian Academy of Sciences, Siberian Branch
Author for correspondence.
Email: petrunina@ksc.krasn.ru
Krasnoyarsk, Russian Federation
V. V. Stasova
V. N. Sukachev Institute of Forest, Russian Academy of Science, Siberian Branch Federal Research Center Krasnoyarsk Scientific Center, Russian Academy of Sciences, Siberian Branch
Email: vistasova@mail.ru
Krasnoyarsk, Russian Federation
References
- Анучин Н. П. Лесная таксация. 6-е изд. М.: ВНИИЛМ, 2004. 552 с.
- Валеева А. Р. Валиуллина А. И., Бикбулатова Г. М., Башкиров В. Н. Уменьшение массовой доли свободного формальдегида в фенолоформальдегидных смолах с замещением фенола жидкими продуктами пиролиза древесины // Деревообр. пром-сть. 2021. № 3. С. 94-102.
- Валеева А. Р. Применение жидких продуктов быстрого пиролиза древесных отходов в качестве компонента фенолоформальдегидных смол: автореф. дис. … канд. тех. наук: 05.21.03. Казань: КНИТУ, 2022. 16 с.
- Валиуллина А. И., Грачев А. Н., Валеева А. Р., Бикбулатова Г. М., Забелкин С. А., Башкиров В. Н. Использование биополиолов, полученных из жидких продуктов пиролиза березовых опилок, в качестве возобновляемого компонента в производстве жестких пенополиуретанов // Все материалы. Энциклопед. справочник. 2021. № 10. С. 41-48.
- Гайле А. А., Сомов В. Е., Варшавский О. М. Ароматические углеводороды: выделение, применение, рынок: cправочник. СПб.: Химиздат, 2000. 544 с.
- Лоскутов С. Р., Петрунина Е. А., Шапченкова О. А., Пляшечник М. А., Стасова В. В. Физико-химические показатели коры лиственницы сибирской: натуральной, химически модифицированной и после адсорбции катионов тяжелых металлов // Лесн. вестн. 2020. Т. 24. № 2. С. 98-110.
- Лотова Л. И. Анатомия коры хвойных. М.: Наука, 1987. 152 с.
- Оболенская А. В., Ельницкая З. П., Леонович А. А. Лабораторные работы по химии древесины и целлюлозы: учеб. пособие для вузов. М.: Экология, 1991. 320 с.
- Рязанова Т. В., Репях С. М. Химия и технология коры. Красноярск: КГТА, 1996. 302 с.
- Семенович А. В., Лоскутов С. Р. Адсорбция катионных красителей модифицированной корой хвойных древесных пород // Хим. раст. сырья. 2004. № 3. С. 121-125.
- Baroni É. G., Tannous K., Rueda-Ordόñez Y. J., Tinoco K. The applicability of isoconversional models in estimating the kinetic parameters of biomass pyrolysis //j. Therm. Anal. Calorim. 2016. V. 123. N. 2. P. 909-917.
- Carrasco E., Smith K. J., Meloni G. Synchrotron photoionization study of Furan and 2-Methylfuran reactions with Methylidyne radical (CH) at 298 K //j. Phys. Chem. A. 2018. V. 122. N. 1. P. 280-291.
- Chen H., Yue X., Yang J., Lv C., Dong S., Luo X., Sun Z., Zhang Y., Li B., Zhang F., Gu H., Yang Y., Zhang Q., Ge S., Bi H., Zheng D., Zhao Y., Li C., Peng W. Pyrolysis molecule of Torreya grandis bark for potential biomedicine // Saudi J. Biol. Sci. 2019. V. 26. Iss. 4. P. 808-815.
- Dave A., Gupta G. K., Mondal M. K. Study on thermal degradation characteristics, kinetics, thermodynamic, and reaction mechanism analysis of Arachis hypogaea shell pyrolysis for its bioenergy potential // Biomass Convers. Biorefin. 2021. https://doi.org/10.1007/s13399-021-01749-7 (Publ. online: 14 July 2021).
- Dibdiakova J., Wang L., Li H. Characterization of ashes from Pinus Sylvestris forest biomass // The 7th Int. Conf. Appl. Energy - ICAE2015 Energy Proc. 2015. V. 75. P. 186-191.
- Dulman V., Odochian L., Dumitras M., Cucu-Man S. A study by non-isothermal thermal methods of spruce wood bark materialss after their application for dye removal //j. Serb. Chem. Soc. 2005. V. 70. N. 11. P. 1325-1333.
- Harvey O. R., Kuo L.-J., Zimmerman A. R., Louchouarn P., Amonette J. E., Herbert B. E. An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars) // Environ. Sci. Technol. 2012. V. 46. N. 3. P. 1415-1421.
- Jadhav D. K., Khandelwal K. R., Ketkar A. R., Pisal S. S. Formulation and evaluation of mucoadhesive tablets containing eugenol for the treatment of periodontal diseases // Drug Develop. Industr. Pharm. 2004. V. 30. N. 2. P. 195-203.
- Mamleev V., Bourbigot S., Le Bras M., Lefebvre J. Three model-free methods for calculation of activation energy in TG //j. Therm. Anal. Calorim. 2004. V. 78. P. 1009-1027.
- Ozawa T. A new method of analyzing thermogravimetric data // Chem. Soc. Jap. 1965. V. 38. N. 11. P. 1881-1886.
- Pásztory Z., Mohácsine I. R., Gorbacheva G., Börcsök Z. The utilization of tree dark // BioRes. 2016. V. 11. N. 3. P. 7859-7888.
- Petrunina E. A., Shapchenkova O. A., Loskutov S. R. Physico-chemical parameters of Siberian larch (Larix sibirica L.) bark extracted with water-amino-alcoholic extractants // Khimiya Rastitel’nogo Syr’ya (Chem. Plant Raw Mat.). 2021. N. 2. P. 103-107.
- Santín C., Doerr S. H., Merino A., Bucheli T. D., Bryant R., Ascough P., Gao X., Masiello C. A. Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars // Sci. Rep. 2017. V. 7. Article number: 11233.
- Shangguan W., Chen Z., Zhao J, Song X. Thermogravimetric analysis of cork and cork components from Quercus variabilis // Wood Sci. Technol. 2018. V. 52. P. 181-192.
- Shao Q., Wang C., Liu H., Wang Y., Guo J. Reaction mechanism and evolved gases of larch bark pyrolysis by TG-FTIR analysis // Wood Sci. Technol. 2019. V. 53. Iss. 5. P. 101-118.
- Yue X., Li X., Chen X., Ashraf M. A., Liu Z., Bi H., Zheng D., Zhao Y., Peng W. Molecules and functions of Cornus officinalis bark volatiles // Emir. J. Food Agr. 2018. V. 30. Iss. 10. P. 828-838.
Supplementary files


