Интерполиэлектролитные комплексы амфифильных полимеров: тот случай, когда последовательность синтеза влияет на свойства

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассмотрены возможности целенаправленного получения интерполиэлектролитных комплексов с упорядоченной надмолекулярной структурой – полимеризация в составе полиэлектролит-коллоидных комплексов различного состава, прямое смешение полиэлектролитов в растворе, реакция полиэлектролитов на межфазных границах. С помощью методов сканирующей электронной микроскопии и малоуглового рентгеновского рассеяния продемонстрированы различия в структуре интерполиэлектролитных комплексов, обусловленные синтезом. Показаны способы синтеза дисперсий интерполиэлектролитных комплексов с контролируемым радиусом частиц, особенности стабильности таких дисперсии к диссоциации на индивидуальные компоненты, а также некоторые практические аспекты их применения с лабораторным тестированием потенциала.

Полный текст

Доступ закрыт

Об авторах

П. А. Фетин

Санкт-Петербургский государственный университет

Автор, ответственный за переписку.
Email: p.fetin@spbu.ru

Институт химии

Россия, 199034 Санкт-Петербург, Университетская наб., д. 7–9

А. Е. Минов

Санкт-Петербургский государственный университет

Email: p.fetin@spbu.ru

Институт химии

Россия, 199034 Санкт-Петербург, Университетская наб., д. 7–9

И. М. Зорин

Санкт-Петербургский государственный университет

Email: p.fetin@spbu.ru

Институт химии

Россия, 199034 Санкт-Петербург, Университетская наб., д. 7–9

Список литературы

  1. Pergushov D.V., Müller A.H.E., Schacher F.H. // Chem. Soc. Rev. 2012. V. 41. P. 6888.
  2. Zezin A.B., Izumrudov V.A., Kabanov V.A. // Makromol. Chem., Macromol. Symp. 1989. V. 26. P. 249.
  3. Fuoss R., Sadek H. // Science. 1949. V. 110. № 2865. P. 552.
  4. Michaels A.S., Miekka R.G., Michaels A.S., Miekka R.G. // Phys. Chem. 1961. V. 65. № 10. P. 1765.
  5. Požar J., Kovačević D. // Soft Matter. 2014. V. 10. № 34. P. 6530.
  6. Bharadwaj S., Montazeri R., Haynie D.T. // Langmuir. 2006. V. 22. № 14. P. 6093.
  7. Feng X., Leduc M., Pelton R. // Coll. Surf. A. 2008. V. 317. № 1–3. P. 535.
  8. Pergushov D.V, Muller A.H.E., Schacher F.H. // Chem. Soc. Rev. The Royal Soc. Chem. 2012. V. 41. № 21. P. 6888.
  9. Kabanov V.A. // Usp. Khim. 2005. V. 74. № 1. P. 3.
  10. Rogacheva V.B., Zezin A.B., Kargin V.A. // Biophysics (Oxf). 1970. V. 15. № 3. P. 389.
  11. Aleksina O.L., Zezin A.B., Papisov I.M. // Biophysics (Oxf). 1973. V. 18. № 5. P. 788.
  12. Penott-Chang E.K., Pergushov D.V., Zezin A.V., MullerA. H.E. // Langmuir. 2010. V. 26. № 11. P. 7813.
  13. Kabanov V.A., Kargina O.V., Petrovskaya V.A. // Polymer Science A. 1971. V. 13. № 2. P. 394.
  14. Ganeva D., Faul C.F.J., Gotz C., Sanderson R. // Macromolecules. 2003. V. 36. № 8. P. 2862.
  15. Dreja M., Lennartz W. // Macromolecules. 1999. V. 32. № 10. P. 3528.
  16. Raffa P., Wever D.A.Z., Picchioni F., Broekhuis A.A. // Chem. Rev. 2015. V. 115. № 16. P. 8504.
  17. Shi H., Zhao Y., Dong X., Zhou Y., Wang D. // Chem. Soc. Rev. 2013. V. 42. № 5. P. 2075.
  18. Zorin I.M., Zorina N.A., Fetin P.A. // Polymer Science C. 2022. V. 64. № 2. P. 123.
  19. Fetin P.A., Zorin I.M., Mechtaeva E.V., Voeiko D.A., Zorina N.A., Gavrilova D.A., Bilibin A.Yu. // Eur. Polym. J. 2019. V. 116. № 2. P. 562.
  20. Fetin P.A., Brevnov O.N., Kadnikov M.V., Fetina V.I., Bilibin A.Yu., Zorin I.M. // Eur. Polym. J. 2021. V. 152. № 4. P. 110468.
  21. Hamley I.W., Castelletto V. // Prog. Polym. Sci. 2004. V. 29. № 9. P. 909.
  22. Rosen M.J. Surfactants and Interfacial Phenomena. New Jersey: Wiley, 2004.
  23. Zezin A.B., Kasaikin V.A., Kabanov N.M., Kharenko O.A., Kabanov V.A. // Polymer Science A. 1984. V. 26. № 7. P. 1702.
  24. Tsuchida E., Abe K., Honma M. // Macromolecules. 1968. V. 9. P. 112.
  25. Kabanov V.A., Papisov I.M. // Polymer Scince A. 1979. V. 21. № 2. P. 261.
  26. Kharenko O.A., Izumrudov V.A., Kharenko A.V., Kasaikin V.A., Zezin A.B., Kabanov V.A. // Polymer Science A. 1980. V. 22. № 1. P. 227.
  27. Etrych T., Leclercq L., Boustta M., Vert M. // Eur. J. Pharm. Sci. 2005. V. 25. № 2–3. P. 281.
  28. Rogacheva V.B., Ryzhikov S.V., Shcnors T.V., Zezin A.B., Kabanov V.A. // Polymer Science A. 1984. V. 26. № 11. P. 2708.
  29. Machinskaya A.E., Leclercq L., Boustta M., Vert M., Vasilevskaya V.V. // J. Polym. Sci., Polym. Phys. 2016. V. 54. № 17. P. 1717.
  30. Overbeek J.T., Voorn M.J. // J. Cell. Physiol. Suppl. 1957. V. 49. № Suppl 1. P. 7.
  31. Oskolkov N.N., Potemkin I.I. // Macromolecules. 2006. V. 39. № 10. P. 3648.
  32. Rogacheva V.B., Ryzhikov S.V., Zezin A.B., Kabanov V.A. // Polymer Science A. 1984. V. 26. № 8. P. 1872.
  33. Tsvetkov N.V., Fetin P.A., Lezov A.A., Gubarev A.S., Lezova A.A., Zorin I.M., Bilibin A.Yu. // Coll. Polym. Sci. 2018. V. 296. № 2. P. 285.
  34. Tsvetkov N.V., Fetin P.A., Lezov A.A., Gubarev A.S., Achmadeeva L.I., Lezova A.A., Zorin I.M., Bilibin A.Yu. // J. Mol. Liq. 2015. V. 211. P. 239.
  35. Decher G., Hong J.D., Schmitt J. // Thin Solid Films. 1992. V. 210–211. № PART 2. P. 831.
  36. Gelissen A.P.H., Schmid A.J., Plamper F.A., Pergu shov D.V., Richtering W. // Polymer. 2014. V. 55. № 8. P. 1991.
  37. Zhao Q., An Q.F., Ji Y., Qian J., Gao C. // J. Memb. Sci. 2011. V. 379. № 1–2. P. 19.
  38. Kerdjoudj H., Berthelemy N., Boulmedais F., Stoltz J.-F., Menu P., Voegel J.C. // Rev. Soc. Chem. 2010. V. 6. № 16. P. 3722.
  39. Harada A., Kataoka K. // Science. 1999. V. 283. № 5398. P. 65.
  40. Izumrudov V.A., Zezin A.B., Kabanov V.A. // Russ. Chem. Rev. 1991. V. 60. № 7. P. 792.
  41. Lee Y., Kataoka K. // Soft Matter. 2009. V. 5. № 20‒21. P. 3810.
  42. Bronich T.K., Nguyen H.K., Eisenberg A., Kabanov A.V. // J. Am. Chem. Soc. 2000. V. 122. № 35. P. 8339.
  43. Katayose S., Kataoka K. // Bioconjug. Chem. 1997. V. 8. № 5. P. 702.
  44. Dautzenberg H., Karibyants N., Zuitsev S.Y. // Macromol. Rapid Commun. 1997. V. 18. № 2. P. 175.
  45. Margolin A.L., Izumrudov V.A., Svedas V.K., Berezin I.V., Zezin A.B., Kabanov V.A. // Biochim. Biophys. Acta ‒ Proteins Proteomics. 1981. V. 660. № 2. P. 359.
  46. Kabanov V.A., Zezin A.B., Kasaikin V.A., Yaroslavov A.A., Topchiev D.A. // Russ. Chem. Rev. 1991. V. 60. № 3. P. 288.
  47. Mechtaeva E.V., Zorin I.M., Gavrilova D.A., Fetin P.A., Zorina N.A., Bilibin A.Yu. // J. Mol. Liq. 2019. V. 293. P. 111418.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Схема 1.

Скачать (273KB)
3. Рис. 1. Зависимости интенсивности рассеяния рентгеновских лучей от волнового вектора для ИПЭК состава pAMPS‒pAUTA, полученного смешением полиэлектролитов в этаноле (а), и пленки гребнеобразного полиэлектролита pAUTA-С4 (С4 – бутират), отлитой из раствора в метаноле (б) [20].

Скачать (148KB)
4. Рис. 2. Зависимость интенсивности рассеяния рентгеновских лучей от волнового вектора для pAMPS‒pAUTA, полученного в гетерогенных условиях на межфазной границе вода‒хлороформ из pAUTA-Ts и pAMPS‒DDA. На вставке ‒ увеличенный фрагмент.

Скачать (111KB)
5. Рис. 3. Зависимости гидродинамического радиуса Rh ассоциатов частиц ИПЭК (а) и ζ-потенциала дисперсии (б) от молекулярной массы исходного полиэлектролита Mw (pAMPS-Na). Частицы ИПЭК получены полимеризацией молекул AUTA+: 1 – фракции pAMPS-Na (Ð < 1.4), 2 – дисперсные образцы pAMPS-Na (Ð > 2.5). Каждая точка на графике – отдельный синтез.

Скачать (111KB)
6. Рис. 4. АСМ-изображения дисперсий ИПЭК pAMPS‒pAUTA на слюде. Низкомолекулярные соли удалены диализом. Мw (Ð) исходного полиэлектролита pAMPS-Na: (а) ‒ 3800 × 103 (3.0), (б) ‒ 1460 × 103 (3.6), (в) – 702 × 103 (1.4), (г) – 660 × 103 (4.4), (д) ‒ 379 × 103 (1.4), (е) ‒ 149 × 103 (1.3).

Скачать (359KB)
7. Рис. 5. Зависимости мутности дисперсий pAMPS‒pAUTA (а) и гидродинамического радиуса (б) от концентрации добавленной соли Mw (pAMPS-Na) = 702 × 103, Ð = 1.3. Измерение выполнено через 20 мин (1) и 24 ч (2) после приготовлении дисперсии.

Скачать (107KB)

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».