CIRCUIT DESIGN PROPOSALS FOR IMPROVING THE METROLOGICAL CHARACTERISTICS OF A MICROMECHANICAL ACCELEROMETER WITH A CAPACITIVE DISPLACEMENT SENSOR

Cover Page

Cite item

Full Text

Abstract

Background. Modern accelerometers based on microelectromechanical systems (MEMS) have a very low cost, are distinguished by their miniaturization and low energy consumption. A high measurement error can be identified as one of the disadvantages of such sensors. One of the reasons for this is the significant sensitivity of radio components to changes in ambient temperature. The aim of the work is to improve the metrological characteristics of the accelerometerby increasing the stability of the converter part, made on a D-trigger. Materials and methods. The study showed that the accelerometer with a capacitive displacement sensor, built on a digital D-trigger microcircuit, do not have high accuracy parameters, and it is also difficult to determine them. The proposed buffer comparator makes it possible to eliminate these disadvantages. The accuracy parameters of the buffer comparator elements are estimated. A mathematical model of the accelerometer has been developed to assess the stability of the parameters of the time interval shaper. The stability of the conversion in the time interval for various typical elements of the buffer comparator is estimated. The influence of auxiliary parameters of radio elements on the stability of the buffer comparator has been evaluated. Circuit design solutions are proposed to improve the stability of an accelerometer with a capacitive displacement sensor. Results. The presented circuit design proposals make it possible to increase the stability of the conversion by an accelerometer with a capacitive displacement sensor. The presented results can also be used for a wide range of measuring instruments in which capacitive type motion sensors are used to measure a physical quantity. Conclusions. The application of the studied circuit design proposals makes it possible to increase the stability of the threshold levels of the converter D-trigger and, thereby, to achieve a more accurate conversion of the input signal. The results can be used in the construction of a wide range of measuring instruments of physical quantities for use in industrial devices and in other fields of science and technology.

About the authors

Mikhail A. Vatutin

Mozhaisky Military Space Academy

Author for correspondence.
Email: vatutinm@inbox.ru

Candidate of technical sciences, associate professor, associate professor of the sub-department of autonomous control systems

(13 Zhdanovskaya street, Saint Petersburg, Russia)

Igor A. Shevkunov

Mozhaisky Military Space Academy

Email: vka@mil.ru

Candidate of technical sciences, lecturer of the sub-department of autonomous control systems

(13 Zhdanovskaya street, Saint Petersburg, Russia)

References

  1. Kovalev I.V., Nurgaleeva Yu.A., Gritsenko S.N., Usachev A.V. On the problem of choosing the structure of an automated aircraft control system. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta imeni akademika M.F. Reshetneva = Bulletin of the Siberian State Aerospace University named after Academician M.F. Reshetnev. 2009;(3):105–110. (In Russ.)
  2. Borisova A.Yu., Smal' A.V. Analysis of the development of modern free-form inertial navigation systems. Inzhenernyy vestnik MGTU im. N.E. Baumana = Engineering Bulletin of the Bauman Moscow State Technical University. 2017;(5):50–57. (In Russ.)
  3. Trefilov P.M. Comparative analysis of improving the accuracy characteristics of inertial navigation systems. XIII Vserossiyskoe soveshchanie po problemam upravleniya. VSPU-2019 = XIII All-Russian Meeting on management problems. VSPU-2019. Moscow, 2019. (In Russ.)
  4. Andreev S.V., Il'inykh V.V., Il'inykh O.A. et al. Assessment of the influence of errors of inertial sensors on the accuracy of a strapback inertial navigation system. Vestnik Kontserna VKO «Almaz-Antey» = Bulletin of the Almaz-Antey East Kazakhstan Region Concern. 2018;(2):29–34. (In Russ.)
  5. Dubovskoy V.B., Kislenko K.V., Pshenyanik V.G. Methodology for improving the accuracy of navigation support for spacecraft equipped with highly sensitive accelerometers. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie = Proceedings of higher educational institutions. Instrument engineering. 2018;61(7):590–595. (In Russ.)
  6. Volkov V.L. Substantiation of requirements for the parameters of a micromechanical accelerometer. Trudy Nizhegorodskogo gosudarstvennogo tekhnicheskogo universiteta im. R.E. Reshetnikova = Proceedings of the Nizhny Novgorod State Technical University named after R.E. Reshetnikov. 2011;(2). (In Russ.)
  7. Luk'yanov V.V., Medvedev V.O., Medvedeva Yu.D. Determination of navigation parameters of a terrestrial mobile object using micromechanical inertial sensors. Sovremennye naukoemkie tekhnologii = Modern science-intensive technologies. 2017;(11):40–46. (In Russ.). Available at: https://top-technologies.ru/ru/article/ view?id=36842 (accessed 14.09.2023).
  8. Prokhortsov A.V., Minina O.V. Review of high-precision accelerometers from Russian manufacturers. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki = Proceedings of Tula State University. Technical sciences. 2019;(10):301–305. (In Russ.)
  9. Klyuchnikov A.I. Evaluation of the temperature error of a micromechanical accelerometer. Raketno-kosmicheskaya tekhnika. NPO avtomatiki im. akademika N.A. Semikhatova: VII nauch.-tekhn. konf. molodykh spetsialistov (g. Ekaterinburg, 8–10 aprelya 2015) = Rocket and space technology. NPO of Automation named after Academician N.A. Semikhatov : VII Scientific and Technical Conference of young specialists (Yekaterinburg, 8–10 April 2015). Ekaterinburg, 2015;Pt.1:219–229. (In Russ.)
  10. Vatutin M.A., Klyuchnikov A.I. Mathematical model of the error of the compensation accelerometer. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie = Proceedings of higher educational institutions. Instrument engineering. 2023;66(4):276–284. (In Russ.). doi: 10.17586/0021-3454-2023-66-4-276-284
  11. Skorobogatov V.V. Problems of developing a wide-band quartz pendulum accelerometer with digital feedback and ways to solve them. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki = Proceedings of Tula State University. Technical sciences. 2016;(10):17–29. (In Russ.)
  12. Buyankin M.P., Vatutin M.A., Klyuchnikov A.I. Adaptation of a compensation-type pendulum accelerometer to the disturbing factors of outer space. Vestnik Rossiyskogo novogo universiteta. Ser.: Slozhnye sistemy: modeli, analiz i upravlenie = Bulletin of the Russian New University. Ser.: Complex systems: models, analysis and management. 2020;(1):55–59. (In Russ.)
  13. Vatutin M.A., Klyuchnikov A.I., Kozlov D.M. Methodology for reducing the error of the self-oscillatory accelerometer. Vestnik Rossiyskogo novogo universiteta. Ser.: Slozhnye sistemy: modeli, analiz i upravlenie = Bulletin of the Russian New University. Ser.: Complex systems: models, analysis and management. 2022;(4):22–32. (In Russ.)
  14. Vatutin M.A., Klyuchnikov A.I. A technique for increasing the stability of a nonlinear link with a delay for an auto-oscillatory accelerometer. Trudy MAI = Proceedings of MAI. 2022;(127). (In Russ.). doi: 10.34759/trd-2022-127-22
  15. Vatutin M.A., Klyuchnikov A.I., Petrov D.G., Sudar' Yu.M. Method of circuit design of an integrating pendulum accelerometer. Trudy MAI = Proceedings of MAI. 2023;(128). (In Russ.). doi: 10.34759/trd-2023- 128-18
  16. Arbuzov V.P. Measuring direct conversion circuits for capacitive accelerometers and gyroscopes. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie = Proceedings of higher educational institutions. Instrument engineering. 2019;62(11):997–1004. (In Russ.)
  17. Raspopov V.Ya. Mikromekhanicheskie pribory: ucheb. posobie = Micromechanical devices : textbook. Moscow: Mashinostroenie, 2007:400. (In Russ.)
  18. Dvornikov A.V., Chekhovskiy V.A., Prokopenko N.N. et al. High-speed broadband operational amplifiers on a basic matrix crystal. Izvestiya vuzov. Elektronika = Proceedings of higher educational institutions. Electronics. 2023;28(1):96–111. (In Russ.). doi: 10.24151/1561-5405-2023-28-1-96-111
  19. Bormontov E.N., Sukhoterin E.V., Kolesnikov D.V., Nevezhin E.V. Methods of stabilizing the main characteristics of the reference voltage source. Fundamental'nye issledovaniya = Fundamental research. 2014;(5),pt.5:934–938. (In Russ.)
  20. Dushin E.M. (ed.). Osnovy metrologii i elektricheskie izmereniya = Fundamentals of metrology and electrical measurements. Leningrad: Energoatomizdat, Leningradskoe otd., 1987:480. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».