Evaluating the Accuracy of Solving the Simplest Sensory-Cognitive Tasks by the Operator of Ergatic Sys-tems
- Authors: Steshin I.S.1, Petukhov I.V.1, Steshina L.A.1, Tanryverdiev I.O.1
-
Affiliations:
- Volga State University of Technology
- Issue: No 4 (64) (2024)
- Pages: 61-73
- Section: TECHNOLOGIES AND MACHINES OF FORESTRY
- URL: https://bakhtiniada.ru/2306-2827/article/view/284654
- DOI: https://doi.org/10.25686/2306-2827.2024.4.61
- EDN: https://elibrary.ru/WSORUK
- ID: 284654
Cite item
Full Text
Abstract
Introduction. The use of training complexes and simulators is now considered to be an effective means of preparing operators of complex technological systems. At the same time, there is a considerable divergence in the composition of the technical equipment applied in the training complexes, which raises the question of dependence between training results and technologies used. The study is aimed at evaluating the accuracy of solving the simplest sensory-cognitive tasks significant for effective professional activity in conditions of information perception in virtual environments and from electronic displays. The hypothesis was tested about the dependence of the results of solving sensory-cognitive tasks on the modality of information presentation. The object of the study is elementary sensory-cognitive tasks based on the assessment of the center of mass of geometric objects. These tasks were chosen as typical ones faced by operators involved in the loading and unloading process. Such a task encompasses a sensory component in terms of geometric shape assessment and a cognitive one. The methods for solving the problem are those of cluster analysis including the t-SNE dimensionality reduction technique and the K-means unsupervised machine learning algorithm that allow the identification of patterns in the experiment results. Results. The analysis revealed no statistically significant differences in the results of measuring either the accuracy of the perception of geometric object sizes and shapes or the speed of this process when using different modalities of presenting video information to the operator. This indicates that the way the information is presented does not affect the results. Conclusion. It has been established that immersion in virtual environments does not have a significant negative or positive effect on the accuracy of the operator’s perception of the sizes and shapes of geometric objects. Given the other advantages of virtual environments, it can be assumed that training manipulator operators in guidance tasks in virtual environments will have minor advantages compared to their training them in simulators based on electronic displays, primarily perhaps due to the element of novelty.
About the authors
Ilya S. Steshin
Volga State University of Technology
Email: PetuhovIV@volgatech.net
ORCID iD: 0009-0009-4241-3798
SPIN-code: 2965-9368
postgraduate student, Junior Researcher
Russian Federation, 3, Lenin Sq., Yoshkar-Ola, 424000Igor V. Petukhov
Volga State University of Technology
Author for correspondence.
Email: PetuhovIV@volgatech.net
ORCID iD: 0009-0000-2365-4857
SPIN-code: 6009-1846
Doctor of Engineering Sciences, Professor at the Chair of Design and Production of Computing Systems
Russian Federation, 3, Lenin Sq., Yoshkar-Ola, 424000Ludmila A. Steshina
Volga State University of Technology
Email: PetuhovIV@volgatech.net
ORCID iD: 0009-0006-1526-991X
SPIN-code: 3493-0013
Candidate of Engineering Sciences, Associate Professor at the Chair of Design and Production of Computing Systems
Russian Federation, 3, Lenin Sq., Yoshkar-Ola, 424000Ilya O. Tanryverdiev
Volga State University of Technology
Email: PetuhovIV@volgatech.net
ORCID iD: 0000-0003-2437-6339
SPIN-code: 4111-0072
Candidate of Engineering Sciences, Associate Professor at the Chair of Design and Production of Computing Systems
Russian Federation, 3, Lenin Sq., Yoshkar-Ola, 424000References
- Петухов И. В. К вопросу обеспечения надёжности эргатических систем управления // Мехатроника, автоматизация, управление. 2011. № 1. С. 25–30. EDN: NCKUJP
- Petukhov I. V. To the Question of Maintenance of Reliability Human-Machine System. Мechatronics, Automation, Control. 2011;(1):25–30. EDN: NCKUJP (In Russ.).
- Nardo M., Forino D., Murino T. The evolution of man–machine interaction: the role of human in Industry 4.0 paradigm. Production & manufacturing research. 2020;8(1):20–34. doi: 10.1080/21693277.2020.1737592
- Petukhov I., Steshina L. Assessment of vocational aptitude of man-machine systems operators. In: Proceedings 7th International Conference on Human System Interactions, HIS-2014 (Costa da Caparica, Portugal, June 16-18, 2014). IEEE Publ., 2014:44–48. doi: 10.1109/HSI.2014.6860446
- Read G. J. M., Shorrock S., Walker G. H. et al. State of science: evolving perspectives on ‘human error’. Ergonomics. 2021;64(9):1091–1114. doi: 10.1080/00140139.2021.1953615
- Palander T., Ovaskainen H., Tikkanen L. An adaptive work study method for identifying the human factors that influence the performance of a human-machine system. Forest Science. 2012;58(4):377–389. doi: 10.5849/forsci.11-013
- Иванов В. В. Факторы, влияющие на работу харвестера // Деревообработка: технологии, оборудование, менеджмент XXI века: труды XIV Международного евразийского симпозиума, Екатеринбург, 17–20 сентября 2019 года. Екатеринбург: Уральский государственный лесотехнический университет, 2019. С. 53–58. EDN: TWFVWX
- Ivanov V. V. Factors, that Can Affect the Operation of the Harvester. In: Woodworking: technologies, equipment, management of the 21st century: Proceedings of the XIV International Eurasian Symposium (Ekaterinburg, September 17–20, 2019). Ekaterinburg, Ural State Forest Engineering University; 2019:53–58. EDN: TWFVWX (In Russ.).
- Tervo K., Palmroth L., Koivo H. Skill evaluation of human operators in partly automated mobile working machines. IEEE Transactions on automation science and engineering. 2010;7(1):133–142. doi: 10.1109/TASE.2009.2025364
- Petukhov I., Steshina L., Glazyrin A. Application of virtual environments in training of ergatic system operators. Journal of Applied Engineering Science. 2018;16(3):398–403. doi: 10.5937/JAES16-17382
- Lapointe J. F., Robert J. M. Using VR for Efficient Training of Forestry Machine Operators. Education and Information Technologies. 2000;5(4): 237–250. doi: 10.1023/A:1012045305968
- Zheng Y., Cheng B., Huang Q. et al. Research on Virtual Driving System of a Forestry Logging Harvester. Wireless Personal Communications. 2018;102(2):667–682. doi: 10.1007/s11277-017-5085-3
- Pereira Jr J. Development of a Harvester Machine Simulator in Virtual Reality. Master of Science Thesis. Tampere University, Finland, 2019. 70 p. Available from: https://urn.fi/URN:NBN:fi:tuni-201906192113 [Accessed 10 October 2024]
- Hartsch F., Schönauer M., Breinig L., et al. Influence of Loading Distance, Loading Angle and Log Orientation on Time Consumption of Forwarder Loading Cycles: A Pilot Case Study. Forests. 2022;13(3):384. doi: 10.3390/f13030384
- Steshina L., Petukhov I., Tanryerdiev I.et al. Training of high-skilled workers using exercisers and simulators. In: 3rd European Conference on Electrical Engineering and Computer Science, EECS (Athens, Greece, Dec.28-30, 2019). IEEE Publ., 2019:134–139. doi: 10.1109/EECS49779.2019.00036
- Bachman P., Milecki A. Safety Improvement of Industrial Drives Manual Control by Application of Haptic Joystick. In: Intelligent Systems in Production Engineering and Maintenance (ISPEM 2018). Burduk A., Chlebus E., Nowakowski T., Tubis A. (eds). Springer International Publishing, 2019:563–573. doi: 10.1007/978-3-319-97490-3_54
- Hornsey R. L., Hibbard P. B., Scarfe P. Size and shape constancy in consumer virtual reality. Behavior research methods. 2020;52(1):1587–1598. doi: 10.3758/s13428-019-01336-9
- Creem-Regehr S. H., Stefanucci J. K., Bodenheimer B. Perceiving distance in virtual reality: theoretical insights from contemporary technologies. Philosophical Transactions of the Royal Society B. 2023;378(1869):20210456. doi: 10.1098/rstb.2021.0456
- Ping J, Weng D, Liu Y et al. Depth perception in shuffleboard: Depth cues effect on depth perception in virtual and augmented reality system. Journal of the Society for Information Display. 2020;28(2): 164–176. doi: 10.1002/jsid.840
- Lebreton P., Raake A., Barkowsky M. et al. Measuring perceived depth in natural images and study of its relation with monocular and binocular depth cues. In: Stereoscopic Displays and Applications XXV. SPIE Electronic Imaging 2014 (February 2–6, 2014, San Francisco, California, United States).
- Woods A. J., Holliman N. S., Favalora G. E. (eds). SPIE, 2014;9011:82–92. doi: 10.1117/12.2040055
- Watt S. J., Akeley K., Ernst M. O. et al. Focus cues affect perceived depth. Journal of vision. 2005;5(10):834–862. doi: 10.1167/5.10.7
- Kim J. J.-J., McManus M. E., Harris L. R. Body orientation affects the perceived size of objects. Perception. 2022;51(1):25–36. doi: 10.1177/03010066211065673
- Harris L. R., Mander C. Perceived distance depends on the orientation of both the body and the visual environment. Journal of vision. 2014;14(12):17. doi: 10.1167/14.12.17
- Holden J, Francisco E, Lensch R. et al. Accuracy of different modalities of reaction time testing: Implications for online cognitive assessment tools. BioRXIV. 2019:726364. doi: 10.1101/726364
- Efron B. Second thoughts on the bootstrap. Statistical science. 2003;18(2):135–140. doi: 10.1214/ss/1063994968
- Van der Maaten L., Hinton G. Visualizing data using t-SNE. Journal of machine learning research. 2008;9:2579–2605.
- MacQueen J. Some methods for classification and analysis of multivariate observations. In: Berkeley Symposium on Mathematical Statistics and Probability (June 21–July 18, 1965 and December 27, 1965–January 7, 1966, University of California, Berkeley). Le Cam L. M., Neyman J. (eds). University of California Press, 1967;5.1:281-297.
- Thorndike R. L. Who belongs in the family? Psychometrika. 1953;18(4):267–276. doi: 10.1007/BF02289263
- Deza M. M., Deza E. Encyclopedia of distances. Springer-Verlag Berlin, Heidelberg; 2009. 590 p. doi: 10.1007/978-3-642-00234-2
- Harris C. R., Millman K. J., van der Walt S. J. et al. Array programming with NumPy. Nature. 2020;585:357–362. doi: 10.1038/s41586-020-2649-2
- McKinney W. Data structures for statistical computing in Python. In: The 9th annual Scientific Computing with Python conference, SciPy 2010 (June 28–July 3, 2010, Austin, Texas). SciPy, 2010;56–61. doi: 10.25080/Majora-92bf1922-00a
- Virtanen P., Gommers R., Oliphant T. E. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature methods. 2020;17(3): 261–272. doi: 10.1038/s41592-019-0686-2
- Pedregosa F., Varoquaux G., Gramfort A. Scikitlearn: Machine learning in Python. Journal of machine learning research. 2011;12:2825−2830.
Supplementary files
