Generation of zinc oxide nanoparticles in a glow discharge at atmospheric pressure
- 作者: Savkin K.P.1, Sorokin D.A.1, Beloplotov D.V.1, Semin V.O.2, Nikolaev A.G.1, Shandrikov M.V.1, Cherkasov A.A.1
-
隶属关系:
- Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences
- Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences
- 期: 卷 17, 编号 4 (2024)
- 页面: 54-64
- 栏目: Articles
- URL: https://bakhtiniada.ru/2305-9117/article/view/284436
- DOI: https://doi.org/10.30826/CE24170406
- EDN: https://elibrary.ru/WLSQUL
- ID: 284436
如何引用文章
详细
The paper presents a study of the features of discharge at atmospheric pressure in an inert gas jet generating plasma flows with a high content of metal particles in the context of obtaining aerosols with a high
content of nanoparticles of zinc oxides, as applied to obtaining nanosized powders and coatings based on them. It is shown that the most suitable is the operation of a low-current discharge at atmospheric pressure in the glow discharge mode, which remains an insufficiently studied physical phenomenon to date. Emission of metal atoms from the surface of the molten zinc cathode insert occurs as a result of heat flux from the cathode layer of the discharge and gasdynamic interaction of the working gas jet with the molten metal. The main electrophysical and optical characteristics of the discharge included the following parameters: cathode material — zinc; discharge voltage 150–300 V; current 500–600 mA; pulse duration 9–12 s with frequency 60–100 kHz in argon flow at a flow rate of 1 l/min. The presence of particles of cathode materials was confirmed by ionic and atomic lines of zinc, which were in the emission spectrum and were clearly distinguishable against the background of lines of argon atoms (Ar I). Based on the discharge with such parameters, the generation of powders of zinc oxide with particle sizes from 10 to 50 nm was carried out as a result of emission of combined gas–metal flows from discharge plasma through the anode orifice into the surrounding air. This led to their cooling, adhesion into nanosized agglomerates, and oxidation upon interaction with oxygen. Prospects for further development of this method of nanopowder synthesis and possibilities of increasing its productivity are discussed.
全文:

作者简介
Konstantin Savkin
Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: savkin@opee.hcei.tsc.ru
(b. 1980) — Candidate of Science in technology, senior research scientist
俄罗斯联邦, 2/3 Akademi- cheskiy Prosp., Tomsk 634055Dmitry Sorokin
Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences
Email: SDmA-70@loi.hcei.tsc.ru
(b. 1986) — Candidate of Science in physics and mathematics, leading research scientist
俄罗斯联邦, 2/3 Akademi- cheskiy Prosp., Tomsk 634055Dmitry Beloplotov
Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences
Email: rffbdim@loi.hcei.tsc.ru
(b. 1989) — Candidate of Science in physics and mathematics, senior research scientist
俄罗斯联邦, 2/3 Akademi- cheskiy Prosp., Tomsk 634055Viktor Semin
Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences
Email: viktor.semin.tsk@gmail.com
(b. 1992) — Candidate of Science in physics and mathematics, research scientist
俄罗斯联邦, 2/4 Akademicheskiy Prosp., Tomsk 634055Alexey Nikolaev
Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences
Email: nik@opee.hcei.tsc.ru
(b. 1968) — Candidate of Science in technology, senior research scientist
俄罗斯联邦, 2/3 Akademi- cheskiy Prosp., Tomsk 634055Maxim Shandrikov
Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences
Email: shandrikov@opee.hcei.tsc.ru
(b. 1979) — Candidate of Science in technology, senior research scientist
俄罗斯联邦, 2/3 Akademi- cheskiy Prosp., Tomsk 634055Alexander Cherkasov
Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences
Email: cherkasov@opee.hcei.tsc.ru
(b. 1998) — engineer
俄罗斯联邦, 2/3 Akademi- cheskiy Prosp., Tomsk 634055参考
- Moezzi, A., A. M. McDonagh, and M. B. Cortie. 2020. Study of the optical and gas sensing properties of In2O3 nanoparticles synthesized by rapid sonochemical method. J. Mater. Sci. — Mater. El. 31:17474. doi: 10.1007/s10854-020-04303-9.
- Gudmundsson, J. T. 2020. Physics and technology of magnetron sputtering discharges. Plasma Sources Sci. T. 29:113001. doi: 10.1088/1361-6595/abb7bd.
- Anders, A. 2006. Physics of arcing, and implications to sputter deposition. Thin Solid Films 502:22–28. doi: 10.1016/j.tsf.2005.07.228.
- Lyubimov, G. A., and V. I. Rakhovskii. 1978. The cathode spot of a vacuum arc. Sov. Phys. Uspekhi 21:693. doi: 10.1070/PU1978v021n08ABEH005674.
- Vladoiu, R., M. Tichy, A. Mandes, V. Dinca, and P. Kudrna. 2020. Thermionic vacuum arc — a versatile technology for thin film deposition and its applications. Coatings 10(3):211. doi: 10.3390/coatings10030211.
- Tarasenko, V., N. Vinogradov, D. Beloplotov, A. Burachenko, M. Lomaev, and D. Sorokin. 2022. Influence of nanoparticles and metal vapors on the color of laboratory and atmospheric discharges. Nanomaterials 12:652. doi: 10.3390/nano12040652.
- Sorokin, D., K. Savkin, D. Beloplotov, V. Semin, A. Kazakov, A. Nikonenko, A. Cherkasov, and K. Shcheglov. 2023. Magnesium oxide powder synthesis in cathodic arc discharge plasma in an argon environment at atmospheric pressure. Ceramics 6(3):1531. doi: 10.3390/ceramics6030095.
- Tsventoukh, M. M. 2018. Plasma parameters of the cathode spot explosive electron emission cell obtained from the model of liquid-metal jet tearing and electrical explosion. Phys. Plasmas 25(5):053504. doi: 10.1063/1.4999377.
- Anders, S., A. Anders, K. M. Yu, X. Y. Yao, and I. G. Brown. 1993. On the macroparticle flux from vacuum arc cathode spots. IEEE T. Plasma Sci. 21(5):440–446. doi: 10.1109/27.249623.
- Liu, S.-H., J. Trelles, Ch.-J. Li, Ch.-X. Li, and H.-B. Guo. 2022. A review and progress of multiphase flows in atmospheric and low pressure plasma spray advanced coating. Materials Today Physics 27:100832. doi: 10.1016/j.mtphys.2022.100832.
- Huan, Yu., K. Wu, Ch. Li, H. Liao, M. Debliquy, and Ch. Zhang. 2020. Micro-nano structured functional coatings deposited by liquid plasma spraying. J. Adv. Ceram. 9(5):517–534. doi: 10.1007/s40145-020-0402-9.
- Gulyaev, I. P., A. V. Dolmatov, M. Yu. Kharlamov, P. Yu. Gulyaev, V. I. Jordan, I. V. Krivtsun, V. M. Korzhyk, and O. I. Demyanov. 2015. Arc-plasma wire spraying: An optical study of process phenomenology. J. Therm. Spray Techn. 24(7):1566–1573. doi: 10.1007/s11666-015-0356-6.
- Zhang, L., X.-J. Liao, S.-L. Zhang, X.-T. Luo, and Ch.-J. Li. 2021. Effect of powder particle size and spray parameters on the Ni/Al reaction during plasma spraying of Ni–Al composite powders. J. Therm. Spray Techn. 30:181–195. doi: 10.1007/s11666-020-01150-2.
- Savkin, K., E. Oks, G. Yushkov, and Yu. Ivanov. 2020. A low-current atmospheric pressure discharge generating atomic magnesium fluxes. J. Appl. Phys. 127:213303. doi: 10.1063/5.0006239.
- Kramida, A., Yu. Ralchenko, and J. Reader. 2023. NIST Atomic Spectra Database (ver. 5.11). Gaithersburg, MD: National Institute of Standards and Technology. doi: 10.18434/T4W30F.
- Merkt, F., A. Osterwalder, R. Seiler, R. Signorell, H. Palm, H. Schmutz, and R. Gunzinger. 1998. High Rydberg states of argon: Stark effect and field-ionization properties. J. Phys. B — At. Mol. Opt. 31:1705. doi: 10.1088/0953-4075/31/8/020.
- Ranjit, G., and C. I. Sukenik. 2013. Experimental investigation of long-lived Rydberg states in ultracold argon. Phys. Rev. A 87(3):033418. doi: 10.1103/physreva. 87.033418.
- Vlcek, J. 1989. A collisional-radiative model applicable to argon discharges over a wide range of conditions. I. Formulation and basic data. J. Phys. D Appl. Phys. 22(5):623–631. doi: 10.1088/0022-3727/22/5/009.
- Okada, T., and M. Sugawara. 1996. Determination of ionization cross section for argon metastable-metastable collision by means of afterglow technique. Jpn. J. Appl. Phys. 35(8):4535–4540. doi: 10.1143/jjap.35.4535.
- Biondi, M. A. 1951. Ionization by the collision of pairs of metastable atoms. Phys. Rev. 82(3):453–454. doi: 10.1103/ physrev.82.453.2.
- Banks, P. R., and M. W. Blades. 1992. Atomic excitation in a jet-assisted glow discharge plasma plume. Spectrochim. Acta B 47(11):1287–1307. doi: 10.1016/0584-8547(92)80120-6.
- Honig, R. E., and D. A. Kramer. 1969. Vapor pressure data for the solid and liquid elements. RCA Rev. 30(2):285.
补充文件
