Influence of the nature of film forming agents on thermal protective properties of foamable compositions

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Fire protection of building structures and their elements made of polymer composite materials is carried out using fire clutch equipped with liners made of expandable materials. In the event of fire, the overlap of flame spread along the polymer communications is ensured due to the formation of the fire-insulating foam barrier which does not allow the polymer fusible material to heat up to 120 °C. To clarify reasons for their fire-thermal protective efficiency, comparative studies of the thermal and physical-mechanical properties of two foamed compositions and products of their thermal treatment were carried out. Compositions with the same gas-coke-forming system (ammonium polyphosphate / pentaerythritol / dolomite / thermally expanding graphite) differed in the nature of the binder and thermal protection efficiency. In the course of the study, the following techniques were involved: complex thermal, X-ray phase analyzes, scanning electron microscopy as well as a number of standard and original techniques. It is found that the best physicomechanical, thermal insulating, morphological properties of the thermolysis products of the investigated thermofoamable compositions are achieved by overlapping the temperature ranges of the formation of organomineral framework and volatile thermolysis products. The information obtained on the effect of combining the temperature ranges of the formation of gaseous products by polymer binders and the organomineral framework by the studied gas-coke-forming systems on the qualitative and quantitative characteristics of thermofoamable compositions allows a targeted approach to increasing the efficiency of known foamed compositions and the choice of ingredients for creating new thermal protective materials with improved properties.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Valentina Bogdanova

Research Institute for Physical Chemical Problems of the Belarusian State University

Хат алмасуға жауапты Автор.
Email: bogdanova@bsu.by

Doctor of Science in chemistry, professor, head of laboratory

Белоруссия, 14 Leningradskaja Str., Minsk 220006

Olga Kobets

Research Institute for Physical Chemical Problems of the Belarusian State University

Email: kobetsoi@mail.ru

Candidate of Science in chemistry, leading research scientist

Белоруссия, 14 Leningradskaja Str., Minsk 220006

Oksana Buraja

Research Institute for Physical Chemical Problems of the Belarusian State University

Email: 727989Erucamide@mail.ru

research scientist

Белоруссия, 14 Leningradskaja Str., Minsk 220006

Anna Perevoznikova

Belarusian State Pedagogical University named after M. Tank

Email: a.b.perevoznikova@gmail.com

lecturer

Белоруссия, 18 Sovetskaya Str., Minsk 220030

Әдебиет тізімі

  1. Weil, E. D. 2011. Fire-protective and flame-retardant coatings — a state-of-the-art review. J. Fire Sсi. 29(3):259–286. doi: 10.1177/0734904110395469.
  2. Osipov, I. A., and O. A. Zybina. 2014. Povyshenie predela ognestoykosti deformatsionnykh shvov stroitel’nykh konstruktsiy s pomoshch’yu intumestsentnoy germetiziruyushchey kompozitsii [Increase in fire resistance of building expansion joints via intumescent sealant composition]. Inzhenerno-stroitel’nyy zh. [Magazine of Civil Engineering] 8:20–24. doi: 10.5862/MCE.52.3.
  3. Alongi, J., Z. Han, and S. Bourbigot. 2015. Intumescence: Tradition versus novelty. A comprehensive review. Prog. Polym. Sci. 51:28–73. doi: 10.1016/J.PROGPOLYMSCI.2015.04.010.
  4. Puri, R. G., and A. S. Khanna. 2017. Intumescent coatings: A review on recent progress. J. Coat. Technol. Res. 14:1–20. doi: 10.1007/s11998-016-9815-3.
  5. Oliveira, R. B. R. S., A. L. Moreno, Jr., and L. C. M. Vieira. 2017. Intumescent paint as fire protection coating. Ibracon Structures Materials J. 10(1):220–243. doi: 10.1590/S1983-41952017000100010.
  6. Garashchenko, A. N., A. A. Berlin, and A. A. Kul’kov. 2019. Sposoby i sredstva obespecheniya trebuemykh pokazateley pozharobezopasnosti konstruktsiy iz polimernykh kompozitov (obzor) [Methods and means for providing required fire-safety indices of polymer composite structures].Pozharovzryvobezopasnost’ [Fire Explosion Safety] 28(2):9–30. doi: 10.18322/pvb/2019.28.02.9-30.
  7. Bourbigot, S., J. Sarazin, F. Samyn, and M. Jimenez. 2019. Intumescent ethylene–vinyl acetate copolymer: Reaction to fire and mechanistic aspects. Polym. Degrad. Stabil. 161:235–244. doi: 10.1016/j.polymdegradstab.2019.01.029.
  8. Myronyuk, O., D. Baklan, S. Barrat, S. Yezhov, and V. Svidersky. 2019. Influence of plasticizers on fire retarding properties of carbon foams of intumescent coatings. Eastern-European J. Enterprise Technologies 2/6(98):22–28. doi: 10.15587/1729-4061.2019.162554.
  9. Кalafat, K., N. Taran, V. Plavan, V. Bessarabov, G. Zagoriy, and L. Vakhitova. 2020. Comparison of fire resistance of polymers in intumescent coatings for steel structures. Eastern-European J. Enterprise Technologies 4(10(106)):45–54. doi: 10.15587/1729-4061.2020.209841.
  10. Zav’yalov, D. E., O. A. Zybina, N. S. Chernova, A. V. Varlamov, and S. S. Mnatsakanov. 2010. Fire intumescent compositions based on the intercalated graphite. Russ. J. Appl. Chem. 83(9):1679–1682. doi: 10.1134/S1070427210090351.
  11. Duquesne, S., P. Bachelet, S. Bellayer, and W. Mertens. 2013. Influence of inorganic fillers on the fire protection of intumescent coatings. J. Fire Sci. 31(3):258–275. doi: 10.1177/0734904112467291.
  12. Zheng, Z., J. Yan, H. Sun, et al. 2014. Preparation and characterization of microencapsulated ammonium polyphosphate and its synergistic flame-retarded polyurethane rigid foams with expandable graphite. Polym. Int. 63:84–92.
  13. Ullah, S., F. Ahmad, A. Shariff, and M. Bustam. 2014. The effect of 150 m expandable graphite on char expansion of intumescent fire retardant coating. AIP Conf. Proc. 1621(1):355–362. doi: 10.1063/1.4898492.
  14. Gillani, Q. F., F. Ahmad, M. I. A. Mutalib, P. S. Melor, S. Ullah, and A. Arogundade. 2016. Effect of dolomite clay on thermal performance and char morphology of expandable graphite based intumescent fire retardant coatings. Procedia Engineer. 148:146–150. doi: 10.1016/j.proeng.2016.06.505.
  15. Chian. Y. M., Y. M. Kun, S. L. Huat, B. J. Han, R. Durairaj, N. T. Ching, and T. J. Yuen. 2018. Optimization of flame-retardant additives on fire protection performance and thermal properties of water-based intumescent coating. J. Advanced Research Applied Mechanics 49(1):12–23.
  16. Bourbigot, S., J. Sarazin, T. Bensabath, F. Samyn, and M. Jimenez. 2019. Intumescent polypropylene: Reaction to fire and mechanistic aspects. Fire Safety J. 105:261–269. doi: 10.1016/j.firesaf.2019.03.007.
  17. Yasir, M., F. Ahmad, P. Yusoff, S. Ullah, and M. Jimenez. 2020. Latest trends for structural steel protection by using intumescent fire protective coatings: A review. Surface Eng. 36(4):334–363. doi: 10.1080/02670844.2019.1636536.
  18. Ji, W., Y. Yao, J. Guo, and S. Zhang. 2020. Toward an understanding of how red phosphorus and expandable graphite enhance the fire resistance of expandable polystyrene foams. J. Appl. Polym. Sci. 137(35):49045. doi: 10.1002/app.49045.
  19. Dasari, A., Z.-Z. Yu, G.-P. Cai, and Y.-W. Mai. 2013. Recent developments in the fire retardancy of polymeric materials. Prog. Polym. Sci. 38:1357–1387. doi: 10.1016/j.progpolymsci.2013.06.006.
  20. Salvatore, M., G. Carotenuto, S. De Nicola, C. Camerlingo, V. Ambrogi, and C. Carfagna. 2017. Synthesis and characterization of highly intercalated graphite bisulfate. Nanoscale Res. Lett. 12:167. 8 p. doi: 10.1186/s11671-017-1930-2.
  21. Zoleta, J. B. 2020. Improved pyrolysis behavior of ammonium polyphosphate-melamine-expandable (APP-MEL-EG) intumescent fire retardant coating system using ceria and dolomite as additives for I-beam steel application. Heliyon 6:1–8. doi: 10.1016/j.heliyon.2019.e03119.
  22. Bogdanova, V. V., D. N. Arestovich, and V. P. Kirlitsa. 2017. Issledovanie osnovnykh retsepturnykh faktorov, okazyvayushchikh dominiruyushchee vliyanie na termoizoliruyushchuyu sposobnost’ i atmosferostoykost’ ognezashchitnykh pokrytiy [Research of main recepe factors providing a dominant impact on the thermal insulating capacity and atmospheric resistance of fire protective coatings]. Vestsi NAN Belarusi. Ser. fiz.-tekhn. nauk [Proceedings of the National Academy of Sciences of Belarus. Physical-Technical ser.] 4:24–31. Available at: https://vestift.belnauka.by/jour/article/view/344/323 (accessed January 27, 2022).
  23. Pimenta, J. T., C. Goncalves, L. Hiliou, J. F. J. Coelho, and F. D. Magalhaes. 2016. Effect of binder on performance of intumescent coatings. J. Coatings Technology Research 13(2):227–238. doi: 10.1007/s11998-015-9737-5.
  24. Bardina, O. I., Yu. V. Korshak, and O. A. Vasilenko. 2019. Issledovanie ognezashchitnykh polimernykh pokrytiy vspenivayushchegosya tipa [The study of fire-resistant polymer coatings of intumescent type]. Khimiya i tekhnologiya organicheskikh veshchestv [Chemistry Technology Organic Substances] 4(12):25–32. Available at: https://elibrary.ru/download/elibrary_41568692_72256448.pdf (accessed January 27, 2022).
  25. JCPDS. 1989. Powder diffraction file. Swarthmore, PA: International Centre for Diffraction Data.
  26. Bogdanova, V. V., and O. I. Kobets. 2018. Ogne-termozashchitnye svoystva termovspenivayushchikhsya kompozitov na osnove poliolefinov v zavisimosti ot prirody i soderzhaniya napolniteley [Fire-thermo-insulating properties of intumescent composites based on polyolefins depending on nature and content of fillers]. Polimernye materialy i tekhnologii [Polymer Materials and Technologies] 4(4):64–71. doi: 10.32864/polymmattech-2018-4-4-64-71.
  27. Rudakova, T. A., Yu. M. Evtushenko, Yu. A. Grigor’ev, and A. A. Batrakov. 2015. Puti snizheniya temperatury penoobrazovaniya v sisteme polifosfat ammoniya-pentaeritrit v intumestsentnykh sistemakh [Ways of reducing the temperature of foaming in the system ammonium polyphosphate–pentaerythritol in intumescent systems]. Pozharovzryvobezopasnost’ [Fire and Explosion Safety] 24(3):24–31. doi: 10.18322/PVB.2015.24.3.24-31.
  28. Kang, J., F. Takahashi, and J. S. T’ien. 2018. In situ thermal-conductivity measurements and morphological characterization of intumescent coatings for fire protection. J. Fire Sci. 36(5):419–437. doi: 10.1177/0734904118794955.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Figure 1 The DSC research data for binders (a), thermofoamable compositions (TFCs) (b), and gas-coke-forming system (c): 1 — Mowilith binder and TFC1 based onMowilith; and 2 — Osakril binder and TFC2 based on Osakril

Жүктеу (176KB)
3. Figure 2 The DTG data for binders (a), TFCs (b), and gas-coke-forming system (c): 1 — Mowilith binder and TFC1 based on Mowilith; and 2 — Osakril binder and TFC2 based on Osakril

Жүктеу (166KB)
4. Figure 3 The SEM data (×2000) on the morphological structure of sections of foamed thermolysis products: (a) TFC1; and (b) TFC2

Жүктеу (455KB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».