Picric acid crystals response to nanoscale mechanical stimulation
- Authors: Kosareva E.K.1, Gaynutdinov R.V.2, Muravyev N.V.1
-
Affiliations:
- N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
- A. V. Shubnikov Institute of Crystallography, Federal Scientific Research Center “Crystallography and Photonics” of the Russian Academy of Sciences
- Issue: Vol 15, No 2 (2022)
- Pages: 108-116
- Section: Articles
- URL: https://bakhtiniada.ru/2305-9117/article/view/286752
- DOI: https://doi.org/10.30826/CE22150211
- EDN: https://elibrary.ru/AJUSJB
- ID: 286752
Cite item
Abstract
Reaction of the surface of individual picric acid crystals to the nanoscale mechanical stimulation was studied to understand the processes responsible for the initiation of energetic materials. Three types of the local mechanical stimulation, i. e., nanoindentation, friction, and impact were performed by atomic force microscopy methods. It was found that the stimulation at a nanoscale leads to the disappearance of the material of crystal surface. Moreover, the response to mechanical stimulation differs with crystal faces. In addition, the observed effect slows down with humidity increase probably due to the interaction of the picric acid surface with atmospheric water.
About the authors
Ekaterina K. Kosareva
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Author for correspondence.
Email: catherine.kos@yandex.ru
(b. 1996) — junior research scientist
Russian Federation, 4 Kosygin Str., Moscow 119991Radmir V. Gaynutdinov
A. V. Shubnikov Institute of Crystallography, Federal Scientific Research Center “Crystallography and Photonics” of the Russian Academy of Sciences
Email: rgaynutdinov@gmail.com
(b. 1979) — Candidate of Science in physics and mathematics, senior research scientist
Russian Federation, 59 Leninsky Prosp., Moscow 119333Nikita V. Muravyev
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: muravyev.nikita@ya.ru
(b. 1985) — Candidate of Science in technology, senior research scientist
Russian Federation, 4 Kosygin Str., Moscow 119991References
- Afanas’ev, G. T., and V. K. Bobolev. 1968. Initsiirovanie tverdykh vzryvchatykh veshchestv udarom [Initiation of solid explosives by impact]. Moscow: Nauka. 172 p.
- Field, J. E., N. K. Bourne, S. J. P. Palmer, S. M. Walley, J. Sharma, and B. C. Beard. 1992. Hot-spot ignition mechanisms for explosives and propellants [and discussion]. Philos. T. Roy. Soc. A 339(1654):269–283.
- Armstrong, R. W., H. L. Ammon, W. L. Elban, and D. H. Tsai. 2002. Investigation of hot spot characteristics in energetic crystals. Thermochim. Acta 384(1-2):303–313. doi: 10.1016/S0040-6031(01)00786-9.
- Dubovik, A. V. 2011. Chuvstvitelnost’ tverdykh vzryvchatykh sistem k udaru [Impact sensitivity of solid explosives]. Moscow: RKhTU im. D. I. Mendeleeva. 276 p.
- Hua, C., P.-J. Zhang, X.-J. Lu, M. Huang, B. Dai, and H. Fu. 2013. Research on the size of defects inside RDX/HMX crystal and shock sensitivity. Propell. Explos. Pyrot. 38:775–780. doi: 10.1002/prep.201200200.
- Yan, Z., W. Liu, C. Zhang, X. Wang, J. Li, Z. Yang, X. Xiang, M. Huang, B. Tan, G. Zhou, W. Liao, Z. Li, L. Li, H. Yan, X. Yuan, and X. Zu. 2016. Quantitative correlation between facets defects of RDX crystals and their laser sensitivity. J. Hazard. Mater. 313:103–111. doi: 10.1016/ j.jhazmat.2016.03.071.
- Weeks, B. L., R. K. Weese, and J. M. Zaug. 2002. Energetic materials and atomic force microscopy: Structure and kinetics. 12th Detonation Symposium (International). San Diego, CA. 10 p.
- Tian, Q., G. Yan, G. Sun, Ch. Huang, L. Xie, B. Chen, M. Huang, H. Li, Y. Liu, and J. Wang. 2013. Thermally induced damage in hexanitrohexaazaisowurtzitane. Cent. Eur. J. Energ. Mat. 10(2):359–369.
- Burnham, A. K., S. R. Qiu, R. Pitchimani, and B. L. Weeks. 2009. Comparison of kinetic and thermodynamic parameters of single crystal pentaerythritol tetranitrate using atomic force microscopy and thermogravimetric analysis: Implications on coarsening mechanisms. J. Appl. Phys. 105:104312. doi: 10.1063/1.3129504.
- Burch, A. C., D. Y. John, and D. F. Bahr. 2017. Nanoindentation of HMX and idoxuridine to determine mechanical similarity. Crystals 7(11):335–344. doi: 10.3390/ cryst7110335.
- Kovalev, A., and H. Sturm. 2011. Observation of nanoscale hot-spot generation on a 2, 4, 6-trinitrophenol (TNP) single crystal. Surf. Sci. 605(17-18):1747–1753. doi: 10.1016/j.susc.2011.06.012.
- Khabarov, Y. G., A. A. Patrakeev, V. A. Veshnyakov, D. S. Kosyakov, N. V. Ul’yanovskii and A. Yu. Garkotin. 2017. one-step synthesis of picric acid from phenol. Org. Prep. Proced. Int. 49(2):178–181. doi: 10.1080/ 00304948.2017.1291008.
- Muravyev, N. V., K. A. Monogarov, I. N. Melnikov, A. N. Pivkina, V. G. Kiselev. 2021. Learning to fly: Thermochemistry of energetic materials by modified thermogravimetric analysis and highly accurate quantum chemical calculations. Phys. Chem. Chem. Phys. 23(29):15522–15542. doi: 10.1039/D1CP02201F.
- Fried, L. E., M. R. Manaa, P. F. Pagoria, and R. L. Simpson. 2001. Design and synthesis of energetic materials. Annu. Rev. Mater. Res. 31(1):291–321. doi: 10.1146/ annurev.matsci.31.1.291.
- Anczykowski, B., B. Gotsmann, H. Fuchs, J. P. Cleveland, and V. B. Elings. 1999. How to measure energy dissipation in dynamic mode atomic force microscopy. Appl. Surf. Sci. 140(3-4):376–382. doi: 10.1016/S0169-4332(98)00558-3.
- Orlova, E. Yu. 1981. Khimiya i tekhnologiya brizantnykh vzryvchatykh veshchestv [Сhemistry and technology of high explosives]. Leningrad: Khimiya. 312 p.
- Boldyrev, V. V. 1983. Eksperimental’nye metody v mekhanokhimii tverdykh neorganicheskikh veshchestv [Experimental methods in the mechanochemistry of solid inorganic substances]. Novosibirsk: Nauka. 65 p.
Supplementary files
