Comparative studies of the pulse of explosive transformation of nanothermites
- Authors: Patrikeev D.I.1, Kolesov V.I.1, Egorshev V.Y.1
-
Affiliations:
- D. I. Mendeleev Russian University of Chemical Technology
- Issue: Vol 15, No 2 (2022)
- Pages: 102-107
- Section: Articles
- URL: https://bakhtiniada.ru/2305-9117/article/view/286751
- DOI: https://doi.org/10.30826/CE22150210
- EDN: https://elibrary.ru/DFWAUC
- ID: 286751
Cite item
Abstract
A technique for tensometric determination of the pulse of fast-burning pyrotechnic compositions has been developed. The valus of specific impulse of nanoscale compositions CuO/Al, MoO3/Al, Bi2O3/Al (nanothermites) as well as primary explosives (lead azide and lead trinitroresorcinate) were determined. The shock-wave nature of the process of explosive transformation of nanothermites is demonstrated.
About the authors
Dmitry I. Patrikeev
D. I. Mendeleev Russian University of Chemical Technology
Author for correspondence.
Email: pdm31@yandex.ru
(b. 1990) — research scientist
Russian Federation, 9 Miusskaya Sq., Moscow 125047Vasily I. Kolesov
D. I. Mendeleev Russian University of Chemical Technology
Email: Kolesov2116@mail.ru
(b. 1965) — Candidate of Science in chemistry, associate professor
Russian Federation, 9 Miusskaya Sq., Moscow 125047Viacheslav Y. Egorshev
D. I. Mendeleev Russian University of Chemical Technology
Email: egorshev@yahoo.com
(b. 1959) — senior lecturer (until 2021)
Russian Federation, 9 Miusskaya Sq., Moscow 125047References
- Dolgoborodov, A. Yu., V. G. Kirilenko, A. N. Streletskii, et al. 2018. Mekhanoaktivirovannyy termitnyy sostav Al/CuO [Mechanoactivated thermite composition Al/CuO]. Goren. Vzryv (Mosk.) — Combustion and Explosion 11(3):117–124.
- Rashkovskiy, S. A., and A. Yu. Dolgoborodov. 2019. Low-gas detonation in low-density mechanically activated powder mixtures. Tech. Phys. 64:767–775.
- Ananev, S. Yu., L. I. Grishin, A. Yu. Dolgoborodov, and B. D. Yankovskii. 2020 Shock-wave initiation of a thermite mixture of Al + CuO. Combust. Explo. Shock Waves 56:220–230.
- Pantoya, M. L., and J. J. Granier. 2005. Combustion behavior of highly energetic thermites: Nano versus micron composites. Propell. Explos. Pyrot. 30(1):53–62.
- Egorshev, V. Y., V. P. Sinditskii, and K. K. Yartsev. 2013. Combustion of high-density CuO/Al nanothermites at elevated pressures. 10th Autumn Seminar (International) on Propellants, Explosives and Pyrotechnics Proceedings. Chengdu, China. 273–283.
- Kolesov, V. I., and D. I. Patrkeev. 2017. Gorenie nanotermitov v vakuume [Combustion of nanothermites at subatmospheric pressure]. Goren. Vzryv (Mosk.) — Combustion and Explosion 10(1):69–72.
- Sanders, V. E., B. W. Asay, T. J. Foley, B. C. Tappan, A. N. Pacheco, and S. F. Son. 2007. Reaction propagation of four nanoscale energetic composites (Al/MoO3, Al/WO3, Al/CuO, and Bi2O-3). J. Propul. Power 23(4):707–714.
- Son, S. F., B. W. Asay, T. J. Foley, R. A. Yetter, M. H. Wu, and G. A. Risha. 2007. Combustion of nanoscale Al/MoO thermite in microchannels. J. Propul. Power 23(4):715–721.
- Shende, R., S. Subramanian, S. Hasan, et al. 2008. Nanoenergetic composites of CuO nanorods, nanowires, and Al-nanoparticles. Propell. Explos. Pyrot. 33:122–130.
- Bagal, L. I. 1975. Khimiya i tehnologiya initsiiruyushchikh vzryvchatykh veshchestv [Chemistry and technology of initiating explosives]. Moscow: Mashinostroenie. 456 p.
- Belov, G. B. 1998. Thermodynamic analysis of combustion products at high temperature and pressure. Propell. Explos. Pyrot. 23:86–89.
- Clay, S. S., E. R. Kristofer, R. Thiruvengadathan, J. H. Jackson, M. S. Sean, J. T. Robert, K. Gangopadhyay, and S. Gangopadhyay. 2014. Effect of nitrocellulose gasifying binder on thrust performance and high- launch tolerance of miniaturized nanothermite thrusters. Propell. Explos. Pyrot. 39(3)374–382.
- Staley, C. S., K. E. Raymond, R. Thiruvengadathan, S. J. Apperson, K. Gangopadhyay, S. M. Swaszek, R. J. Taylor, and S. Gangopadhyay. 2013. Fast-impulse nanothermite solid-propellant miniaturized thrusters. J. Propul. Power 29(6):1400–1409. doi: 10.2514/1.B34962.
- Apperson, S. J., A. V. Bezmelnitsyn, R. Thiruvengadathan, et al. 2009. Characterization of nanothermite material for solid-fuel microthruster applications. J. Propul.Power 25(5):1086–1091.
- Dai, Ji, Fei Wang, Chengbo Ru, Jianbing Xu, Chengai Wang, Wei Zhang, Yinghua Ye, and Ruiqi Shen. 2018. Ammonium perchlorate as an effective addition for enhancing the combustion and propulsion performance of Al/CuO nanothermites. J. Phys. Chem. C 122(18):10240–10247. doi: 10.1021/acs.jpcc.8b01514.
- Lee, J., K. Kim, and S. Kwon. 2010. Design, fabrication, and testing of MEMS solid propellant thruster array chip on glass wafer. Sensor. Actuat. A — Phys. 157:126–134.
- Puszynski, J. A., C. J. Bulian, and J. J. Swiatkiewicz. 2007. processing and ignition characteristics of aluminum–bismuth trioxide nanothermite system. J. Propul. Power 23(4):698–706.
Supplementary files
