Influence of the choice of kinetic mechanism on predicted pressure rise in numerical simulations of premixed hydrogen–air ignition and combustion
- Authors: Tereza A.M.1, Agafonov G.L.1, Anderzhanov E.K.1, Betev A.S.1, Medvedev S.P.1, Khomik S.V.1, Cherepanova T.T.1
-
Affiliations:
- N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
- Issue: Vol 17, No 3 (2024)
- Pages: 3-11
- Section: Articles
- URL: https://bakhtiniada.ru/2305-9117/article/view/277475
- DOI: https://doi.org/10.30826/CE24170301
- EDN: https://elibrary.ru/SMJXGW
- ID: 277475
Cite item
Abstract
Numerical simulations of ignition delay and pressure rise during autoignition have been performed for lean (6% H2), stoichiometric (29.6% H2), and rich (75% H2) hydrogen–air mixtures at initial pressures of 1 and 6 bar in the temperature range from 850 to 1700 K. Pressure rise for lean and rich mixtures is found to be virtually independent of the choice of a detailed kinetic mechanism (DKM), whereas a dependence of this kind is predicted for the stoichiometric mixture. The time to reach thermodynamic equilibrium (TE), measured in the units of induction period, decreases with increasing initial temperature, whereas the approach to TE accelerates with pressure rise. For the stoichiometric mixture, TE is reached faster than for the lean and rich ones. It is demonstrated that the dynamics of pressure rise determined by the chemical kinetics after the induction period varies with the choice of a DKM and is independent of ignition delay. This observation may be of importance for processes at relatively high temperatures.
Full Text

About the authors
Anatoly M. Tereza
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Author for correspondence.
Email: tereza@chph.ras.ru
Candidate of Sciences in Physics and Mathematics, Senior Researcher
Russian Federation, MoscowGennady L. Agafonov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: gennady_1@mail.ru
Senior Researcher
Russian Federation, MoscowEnes K. Anderzhanov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: enes@inbox.ru
Candidate of Sciences in Physics and Mathematics, Junior Researcher
Russian Federation, MoscowAndrey S. Betev
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: asbetev@gmail.com
Junior Researcher
Russian Federation, MoscowSergey P. Medvedev
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: s_p_medvedev@chph.ras.ru
Candidate of Sciences in Physics and Mathematics, Chief Researcher
Russian Federation, MoscowSergey V. Khomik
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: sergei.khomik@gmail.com
кандидат технических наук, ведущий научный сотрудник
Russian Federation, MoscowTakhmina T. Cherepanova
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
Email: tatkanor@gmail.com
Junior Researcher
Russian Federation, MoscowReferences
- Sanchez, A. L., and F. A. Williams. 2014. Recent advances in understanding of flammability characteristics of hydrogen. Prog. Energ. Combust. 41:1–55. doi: 10.1016/j.pecs.2013.10.002.
- Grune, J., K. Sempert, H. Haberstroh, M. Kuznetsov, and T. Jordan. 2013. Experimental investigation of hydrogen–air deflagrations and detonations in semi-confined flat layers. J. Loss Prevent. Proc. 26:317–323. doi: 10.1016/j.jlp.2011.09.008.
- Domashenko, A. M., and A. V. Stepanov. 2022. Vzryvopozharoopasnost’ pri sozdanii i ekspluatatsii promyshlennykh sistem polucheniya, khraneniya i transportirovaniya zhidkogo vodoroda. Metody obespecheniya zashhity [Explosion and fire hazard at development and operation of industrial systems for production, storage and transportation of liquid hydrogen. Protection methods]. Vesti gazovoy nauki [Gas Science News] 51(2):211–220.
- Semenov, N. N. 1935. Chemical kinetics and chain reactions. Oxford: Clarendon Press. 480 p.
- Dryer, F. L., and M. Chaos. 2008. Ignition of syngas/air and hydrogen/air mixtures at low temperatures and high pressures: Experimental data interpretation and kinetic modeling implications. Combust. Flame 152:293–299. doi: 10.1016/j.combustflame.2007.08.005.
- Shimizu, K., A. Hibi, and M. Koshi. 2011. Updated kinetic mechanism for high-pressure hydrogen combustion. J. Propul. Power 27(2):383–395. doi: 10.2514/1.48553.
- Mathieu, O., A. Levacque, and E. L. Petersen. 2012. Effects of N O addition on the ignition of H –O mixtures: Experimental and detailed kinetic modeling study. Int. J. Hydrogen Energ. 37:15393–15405. doi: 10.1016/ j.ijhydene.2012.07.071.
- Keromnes, A., W. K. Metcalfe, K. A. Heufer, et al. 2013. An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures. Combust. Flame 160:995–1011. doi: 10.1016/j.combustflame.2013.01.001.
- Hashemi, H., J. M. Christensen, S. Gersen, and P. Glarborg. 2015. Hydrogen oxidation at high pressure and intermediate temperatures: Experiments and kinetic modeling. P. Combust. Inst. 35:553–560. doi: 10.1016/ j.proci.2014.05.101.
- Alekseev, V. A., M. Christensen, and A. A. Konnov. 2015. The effect of temperature on the adiabatic burning velocities of diluted hydrogen flames: A kinetic study using an updated mechanism. Combust. Flame 162:1884–1898. doi: 10.1016/j.combustflame.2014.12.009.
- Vlasov, P. A., V. N. Smirnov, and A. M. Tereza. 2016. Reactions of initiation of the autoignition of H2–O2 mixtures in shock waves. Russ. J. Phys. Chem. B 10:456–468. doi: 10.1134/S1990793116030283.
- Hu, E., L. Pan, Z. Gao, X. Lu, X. Meng, and Z. Huang. 2016. Shock tube study on ignition delay of hydrogen and evaluation of various kinetic models. Int. J. Hydrogen Energ. 41(30):13261–13280. doi: 10.1016/j.ijhydene.2016.05.118.
- Konnov, A. A. 2019. Yet another kinetic mechanism for hydrogen combustion. Combust. Flame 203:14–22. doi: 10.1016/j.combustflame.2019.01.032.
- Zhang, Y., J. Fu, M. Xie, and J. Liu. 2021. Improvement of H2/O2 chemical kinetic mechanism for high pressure combustion. Int. J. Hydrogen Energ. 46(7):5799–5811. doi: 10.1016/j.ijhydene.2020.11.083.
- Jin, S., B. Shu, X. He, R. Fernandes, and L. Li. 2021. A study on autoignition characteristics of H –O mixtures with diluents of Ar/N in rapid compression machine for argon power cycle engines. Fuel 303:121291. doi: 10.1016/j.fuel.2021.121291.
- Hong, Z., D. F. Davidson, and R. K. Hanson. 2011. An improved H2/O2 mechanism based on recent shock tube/laser absorption measurements. Combust. Flame 158:633–644. doi: 10.1016/j.combustflame.2010.10.002.
- Schonborn, A., P. Sayad, A. A. Konnov,and J. Klingmann. 2014. OH*-chemiluminescence during autoignition of hydrogen with air in a pressurised turbulent flow reactor. Int. J. Hydrogen Energ. 39(23):12166–12181. doi: 10.1016/j.ijhydene.2014.05.157.
- Tingas, E.-Al., D. C. Kyritsis, and D. A. Goussis. 2019. H2–air autoignition dynamics around the third explosion limit. J. Energ. Eng. 145(1):04018074. doi: 10.1061/(ASCE)EY.1943-7897.0000588.
- Frank-Kamenetskii, D. A. 1969. Diffusion and heat transfer in chemical kinetics. New York, NY: Plenum. 600 p.
- Brjakina, U. F., S. A. Gubin, A. M. Tereza, and V. A. Shargatov. 2010. Determination of the limits of applicability of the chemical equilibrium model to the detonation products of gas mixtures. Russ. J. Phys. Chem. B 4:969–976. doi: org/10.1134/S1990793110060151.
- Kuznetsov, N. M. 1982. Kinetika monomolekulyarnykh reaktsiy [Kinetics of monomolecular reactions]. Moscow: Nauka. 224 p.
- CHEMKIN-Pro 15112 Reaction Design. 2011. San Diego, CA. CK-TUT-10112-1112-UG-1.
- Tereza, A. M., G. L. Agafonov, E. K. Anderzhanov, S. P. Medvedev, and S. V. Homik. 2021. Osobennosti chislennogo modelirovaniya vosplameneniya bednykh vodorodno-vozdushnykh smesey [Features of numerical simulation of lean hydrogen–air mixtures ignition]. Goren. Vzryv (Mosk.) — Combustion and Explosion 14(4):4–13.
- Konnov, A. A. 2015. On the role of excited species in hydrogen combustion. Combust. Flame 162:3755–3772. doi: 10.1016/j.combustflame.2015.07.014.
- Krivosheyev, P., Y. Kisel, А. Skilandz, K. Sevrouk, O. Penyazkov, and A. Tereza. 2024. Ignition delay of lean hydrogen-air mixtures. Int. J. Hydrogen Energ. 66:81–89. doi: 10.1016/j.ijhydene.2024.03.363.
- Tereza, A. M., G. L. Agafonov, E. K. Anderzhanov, A. S. Betev, S. P. Medvedev, and S. V. Homik. 2022. Numerical simulation of autoignition characteristics of lean hydrogen–air mixtures. Russ. J. Phys. Chem. B 16:686–692. doi: 10.1134/S1990793122040297.
- True, J., H. Gg. Wagner, G. L. Schott, R. W. Getzinger, F. M. Page, and M. A. A. Clyne. 1973. Physical chemistry of fast reaction. Ed. B. P. Levitt. London: Plenum.
Supplementary files
