RECOGNITION OF DEFECTS ON THE METAL SURFACE USING MACHINE LEARNING

Cover Page

Cite item

Full Text

Abstract

Due to the increase in product quality requirements in the metallurgical and machine building industries, it is necessary to introduce modern technologies for automatic quality control. Surface defects of metal products (cracks, scratches and inclusions) directly affect the reliability and durability of products. Traditional methods of visual and optical control require significant time and labor costs, are subject to the influence of the human factor and do not always provide sufficient accuracy. Within the framework of the study, a review of modern publications was conducted, which consider approaches to automatic defect classification, as well as discuss the possibilities and limitations of neural network architectures. The analysis of the sources made it possible to identify development trends in the field under consideration and justify the choice of the model architecture. An approach to the detection of defects in images of metal surfaces using convolutional neural networks is proposed. The architecture of the model has been developed, which includes three convolutional layers and fully connected neurons optimized using the ReLU activation function, the Dropout layer and the Softmax output layer. To train the model, we used an open dataset containing 1800 black and white images with six different types of defects. The classification accuracy was 95.83 %, and the value of the loss function was 0.0862. When tested on a test sample, the model correctly recognized 70 out of 72 images. The conducted research confirms the effectiveness of neural networks in the task of detecting visual defects. The presented model can be used in automated quality control systems and additionally adapted to various industrial conditions. In the future, optimization of the model architecture is planned to increase noise tolerance and data variability.

About the authors

Valentina A. Kuznetsova

Siberian State Industrial University

Author for correspondence.
Email: valyakuz28@mail.ru
ORCID iD: 0009-0007-5845-4928
SPIN-code: 1866-2000
Russian Federation

Artem V. Markidonov

Siberian State Industrial University

Email: markidonov_artem@mail.ru
ORCID iD: 0000-0002-4566-528X
SPIN-code: 3939-7328

References

  1. Huang Y., Yu T., Wan K., Yuan J. Detection and classification of metal workpiece surface defects based on machine vision. 2021 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA). 2021:983–987.
  2. https://doi.org/10.1109/AEECA52519.2021.9574344
  3. Bai J., Wu D., Shelley T., Schubel P., Twine D., Russell J., Zeng X., Zhang J. A comprehensive survey on machine learning driven material defect detection: challenges, solutions, and future prospects. ACM Computing Surveys. 2024. https://doi.org/10.48550/arXiv.2406.07880
  4. Zhou C., Lu Z., Lv Z. et al. Metal surface defect detection based on improved YOLOv5. Scientific Reports. 2023;13:20803.
  5. https://doi.org/10.1038/s41598-023-47716-2
  6. Chen S., Zhou F., Gao G., Ge X., Wang R. Unleashing the power of AI in detecting metal surface defects: an optimized YOLOv7-tiny model approach. PeerJ. Computer science. 2024;10:e1727. https://doi.org/10.7717/peerj-cs.1727
  7. Huang Y.C., Hung K.C., Lin J.C. Automated machine learning system for defect detection on cylindrical metal surfaces. Sensors. 2022;22(24):9783. https://doi.org/10.3390/s22249783
  8. Балеев И.А., Земцов А.Н., Зыбин М.И., Смирнов В.А. Распознавание дефектов на металлических сплавах с помощью алгоритмов компьютерного зрения OpenCV. Инженерный вестник Дона. 2021;3(75):78–87.
  9. Погадаева Е.Ю. Распознавание дефектов сварных соединений по фотоизображению для проведения визуального контроля. Молодой ученый. 2020;43(333):5–9.
  10. Румановский И.Г., Калинников Н. А., Никитин Н.А. Применение нейросетевых технологий для дефектоскопии железнодорожных путей. Вестник Тихоокеанского государственного университета. 2023; 4(71):25–40.
  11. Dean K. Argonne scientists use AI to detect hidden defects in stainless steel. Nuclear News, 2025. URL: https://www.ans.org/news/article-6706/argonne-scientists-use-ai-to-detect-hidden-defects-in-stainless-steel. (Дата обращения: 10.04.2025).
  12. Панова В.С., Кузнецова В.А., Панченко И.А. Применение нейронных сетей для прогнозирования свойств высокоэнтропийных сплавов. В кн.: Ультрамелкозернистые и наноструктурные материалы: Сборник трудов открытой школы-конференции стран СНГ. Уфимский университет науки и технологий. 2024:154.
  13. Искусственный интеллект в металлургии: как его используют для обнаружения де-фектов. 2024. URL: https://indpages.ru/prom/ iskusstvennyj-intellekt-v-metallurgii-kak-ego-ispolzuyut-dlya-obnaruzheniya-defektov/ (Дата обращения: 10.04.2025).
  14. Wang S., Xia X., Ye L., Yang B. Automatic detection and classification of steel surface defect using deep convolutional neural networks. Metals. 2021;11(3):388.
  15. https://doi.org/10.3390/met11030388
  16. Suh S. Optimal surface defect detector design based on deep learning for 3D geometry. Scientific Reports. 2025;15:5527.
  17. https://doi.org/10.1038/s41598-025-88112-2
  18. Keshinro B. Image detection and classification: a machine learning approach. 2022. http://dx.doi.org/10.2139/ssrn.4281011
  19. Рыбаков К.М., Хамитов Р.М. Проблемы поверхностной дефектоскопии металлов с использованием машинного обучения и пути их решения. International Journal of Advanced Studies. 2024; 14(1):196–204. https://doi.org./10.12731/2227-930X-2024-14-1-289
  20. Metal Surface Defects Dataset. Kaggle. URL: https://www.kaggle.com/datasets/fantacher/neu-metal-surface-defects-data/data?select =NEU+Metal+Surface+Defects+Data (Дата обращения: 25.03.2025).
  21. Lv Q., Zhang S., Wang Y. Deep Learning Model of Image Classification Using Machine Learning. Advances in Multimedia. 2022; 3351256. https://doi.org/10.1155/2022/3351256
  22. Pilyay A. I. Detection of defects in building materials using artificial intelligence systems. Construction and Architecture. 2023;11(1):20. https://doi.org/10.29039/2308-0191-2022-11-1-20-20
  23. Cherkasov N., Ivanov S., Ivanov M., Ulanov A. Detection of defects in welded butt joints based on laser scanning: neural networks approach. In: International Ural conference on electrical power engineering (UralCon). 2023: 775–779. https://doi.org/10.1109/UralCon59258.2023.10291060
  24. Al-Mamun A.M., Hossain M.R., Sharmin M.M. Detection and classification of metal surface defects using lite convolutional neural network (LCNN). Material Science & Engineering International Journal. 2024; 8(3): 72–76.
  25. https://doi.org/10.15406/mseij.2024.08.00239

Supplementary files

Supplementary Files
Action
1. JATS XML

Журнал «Вестник Сибирского государственного индустриального университета»

Свидетельство о регистрации: ПИ № ФС77-77872 от 03.03.2020 г.

Журнал имеет международный стандартный номер сериального издания ISSN 2304-4497 (Print) и подписной индекс в каталоге «Урал-Пресс» – 41270

Учредитель:

ФГБОУ ВО «Сибирский государственный индустриальный университет»

Адрес редакции:

654007, Кемеровская обл. – Кузбасс, г. Новокузнецк, Центральный район, ул. Кирова, зд. 42, Сибирский государственный индустриальный университет, каб. 483гт, тел. 8-950-270-44-88

Ответственный за выпуски: Запольская Е.М. 

Издатель: Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный индустриальный университет», г. Новокузнецк, Россия

Исключительные авторские права на статьи принадлежат авторам ©

Обработка персональных данных

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).