INFLUENCE OF PLASTIC DEFORMATION ON THE STRUCTURE OF LOW-CARBON STEEL AFTER SURFACE HARDENING AND HEAT TREATMENT
- Authors: Gur'ev M.1, Ivanov S.1, Gur'ev A.1, Lygdenov B.2
-
Affiliations:
- Altai State Technical University named after I.I. Polzunov
- Hubei Key Laboratory of Digital Textile Machinery Zhejiang Tianxiong Industrial Technology
- Issue: No 2 (2025)
- Section: Статьи
- URL: https://bakhtiniada.ru/2304-4497/article/view/381954
- ID: 381954
Cite item
Full Text
Abstract
The structural and phase state, durometry, and metallography of samples cut from flat rolled steel of grade 20 subjected to plastic tensile deformation are considered. Some of the samples were subjected to surface hardening by chemical heat treatment (CTO) before stretching, the second part was subjected to heat treatment (TO). Both treatment methods were carried out at the same temperature regime (850 C with 180 min exposure). At the same time, the task of changing the mechanical properties during heat treatment was not set for the material in question. The microstructure was studied in the directions along and along the rivers of the rolling direction. The effect of thermal and chemical-thermal treatments on the static strength and impact strength of the samples after the corresponding processes was investigated. During plastic stretching deformation, the thickness of the diffusion layer does not change, except for the area located in the fracture zone: the thickness of the diffusion layer increases slightly, but the layer itself is already a conglomerate of fragmented fragments of boride needles, nevertheless, quite firmly connected to the matrix material. It is shown that plastic deformation leads to an increase in the anisotropy of the grain in the direction of the forces, and during plastic deformation, it is crushed by crushing excessively elongated inclusions into smaller fragments in the direction perpendicular to the action of the deforming force. The measurements of grain anisotropy show that in both cases it is close to unity (0.99 for CTO and 1.02 for TO), which suggests that in both cases equi-axial grains are observed, which are close to globular in shape. A comparison of the microstructure of the core of both samples (borated and non-borated), which underwent identical thermal treatment, showed that the microstructure of the core of the samples under consideration is absolutely identical: both the phase composition and the structural state coincide.
About the authors
Mikhail A. Gur'ev
Altai State Technical University named after I.I. Polzunov
Author for correspondence.
Email: agtu-otm2010@mail.ru
ORCID iD: 0000-0002-9191-1787
SPIN-code: 6084-1112
Russian Federation
Sergei G. Ivanov
Altai State Technical University named after I.I. Polzunov
Email: serg225582@mail.ru
ORCID iD: 0000-0002-5965-0249
SPIN-code: 1249-4949
Aleksei M. Gur'ev
Altai State Technical University named after I.I. Polzunov
Email: gurievam@mail.ru
ORCID iD: 0000-0002-7570-8877
SPIN-code: 1134-0006
Bur'yal D. Lygdenov
Hubei Key Laboratory of Digital Textile Machinery Zhejiang Tianxiong Industrial Technology
Email: lygdenov59@mail.ru
ORCID iD: 0000-0002-3580-6165
SPIN-code: 2406-7272
References
- Каллистер У.Д. мл. Материаловедение: от тех-нологии к применению (металлы, керамики, полимеры (пер. с англ. под ред. Малкина А.Я.). Изд-во «Научные основы и технологии»: 2011:896.
- Saunders N., Guo Z., Li X., Miodownik A.P., Schillé J.-P. The Calculation of TTT and CCT diagrams for General Steels. JOM. 2003:55(12):60.
- Trzaska J., Jagiełło A.S., Dobrzański L.A. The calculation of CCT diagrams for engineering steels. Archives of materials science and engineering. 2009;39:13–20.
- Collins J., Piemonte M., Taylor M., Fellowes J., Pick-ering E., Rapid A. Open-Source CCT Predictor for Low Alloy Steels, and Its Application to Composi-tionally Heterogeneous Material. Мetals. 2023;13:1168. https://doi.org/10.3390/met13071168
- Cha S.C. et al. CALPHAD-based alloy design for advanced automotive steels. Part I: Development of bearing steels with enhanced strength and optimized microstructure. Calphad. 2016. http://dx.doi.org/10.1016/j.calphad.2016.04.007
- Avrami M. Kinetics of Phase Change I: General Theory. J. Chem. Phys. 1939;7:1103. http://dx.doi.org/10.1063/1.1750380
- Cahn J.W. Transformation Kinetics During Contin-uous Cooling. Acta Metall. 1956;4:572–575. http://dx.doi.org/10.1016/0001-6160(56)90158-4
- Lee J.L.; Pan Y.T.; Hsieh K.C. Assessment of Ideal TTT Diagram in C-Mn Steel. Mater. Trans. JIM. 1998;39:196–202. http://dx.doi.org/10.2320/matertrans1989.39.196
- Callister W.D., Rethwisch D.G. Fundamentals of Materials Science and Engineering, An Integrated Approach. John Wiley: Hoboken, NJ, 2008:911.
- Shackelford J.F. Introduction to Materials Science for Engineers. Pearson, Prentice Hall: Upper Saddle River, NJ, 2009:533.
- Kalpakjian S., Schmid S. Manufacturing Engineer-ing and Technology. Prentice Hall: Upper Saddle River, NJ, 2009:1216.
- Пат. № 2345175. Способ упрочнения деталей из конструкционных и инструментальных сталей / А.М. Гурьев, С.Г. Иванов, Б.Д. Лыгденов, С.А. Земляков, О.А. Власова, Е.А. Кошелева, М.А. Гурьев; заявл. 03.04.2007; опубл. 27.01.2009. Бюл. № 3.
- Гурьев А.М., Гурьев М.А., Земляков С.А., Иванов С.Г. Выявление особенностей морфологии и фазового состава сталей методами специального металлографического травления. В кн.: Эволюция дефектных структур в конденсированных средах. Сборник тезисов XVI Международной школы-семинара. Барнаул: Алтайский государственный технический университет им. И.И. Ползунова. 2020:83–84.
- Иванов С.Г., Гурьев А.М., Земляков С.А., Гурьев М.А. Методика пробоподготовки образцов высоколегированных сталей для автоматиче-ского анализа карбидной фазы. Ползуновский вестник. 2020;3:102–105.
- Иванов С.Г., Гурьев А.М., Земляков С.А., Гурьев М.А., Романенко В.В. Особенности методики подготовки образцов для автоматического анализа карбидной фазы стали Х12Ф1 после цементации в вакууме с применением программного комплекса «ThixometPRO». Ползуновский вестник. 2020;2:165–168.
- Иванов С.Г., Гурьев М.А., Гурьев А.М., Рома-ненко В.В. Фазовый анализ боридных ком-плексных диффузионных слоев на углероди-стых сталях при помощи цветного травления. Фундаментальные проблемы современного материаловедения. 2020;17(1):74–77.
- Лыгденов Б.Д., Гурьев А.М., Мосоров В.И., Бу-туханов В.А. Перспективные диффузионные покрытия. Международный журнал экспери-ментального образования. 2015;12(4):573.
- Гурьев А.М., Лыгденов Б.Д., Гурьев М.А., Шун-чи М., Власова О.А. Борирование малоуглеродистой стали. Международный журнал экспериментального образования. 2015;12(4):572–573.
- Mei S., Zhang Y., Zheng Q., Fan Y., Lygdenov B., Guryev A. Compound boronizing and its kinetics analysis for H13 steel with rare earth CeO2 and Cr2O3. Applied Sciences. 2022;12(7):3636.
- Гурьев А.М., Грешилов А.Д., Лыгденов Б.Д. Диффузионное борирование – перспективное направление в поверхностном упрочнении изделий из стали и сплавов. Ползуновский альманах. 2010;1:80–88.
- Лыгденов Б.Д., Гурьев А.М., Козлов Э.В., Бутуханов В.А., Чжу Ч. Формирование диффузионного слоя на рабочей поверхности инструмента, работающего в условиях динамического износа. Известия вузов. Черная металлургия. 2015;58.2:117–120.
- Arslan-Kaba M., Karimzadehkhoei M., Keddam M., Timur S., Sireli G.K. An experimental and modelling study on pulse current integrated CRTD-Bor process. Mater. Chem. Phys. 2023;302:127735.
- Campos I., Oseguera J., Figueroa U., García J.A., Bautista O., Kelemenis G. Kinetic study of boron diffusion in the paste boriding process. Mater. Sci. Eng. A. 2003;352:261–265.
- Guo P., Ma S., He X., Lv P., Luo Y., Jia J., Cui X., Xu L., Xing J. Effects of boride orientation and Si content on high-temperature oxidation resistance of directionally solidified Fe – B alloys. Materials. 2022;15:7819.
- Kul M., Yilmaz Y., Oskay K., Kumruoğlu L.C. Ef-fect of chemical composition of boriding agent on the optimization of surface hardness and layer thick-ness on AISI 8620 steel by solid and liquid boriding processes. Adv. Mater. Sci. 2022;22:14–22.
- Zhang S., Zhang H., Zhang H., Zhao X., Li Y. Study on diffusion kinetics and law of chromium on the surface of low-carbon steel. Coatings. 2023;13:98.
Supplementary files
