INVESTIGATION OF THE INFLUENCE OF THE PARAMETERS OF THE DEPOSITION MODE ON THE HARDNESS OF 12CR18NI10TI STEEL AFTER DIRECT LASER CULTIVATION
- Authors: Eremitskaya K.1, Nosova E.1, Balyakin A.1
-
Affiliations:
- Samara National Research University
- Issue: No 2 (2025)
- Section: Статьи
- URL: https://bakhtiniada.ru/2304-4497/article/view/381947
- ID: 381947
Cite item
Full Text
Abstract
Using the direct laser cultivation method at the ILIST-L installation, samples of stainless steel grade 12X18H10T were obtained at a laser radiation power of 1100 ‒ 1500 W with a wall thickness of 10 mm for the case of horizontal and vertical directions of growing samples relative to the larger side. The hardness and microhardness of the samples were studied, and their dependences on the growing regime were revealed. It has been established that the most rational mode, in which uniformity and a high level of properties are achieved, is the mode with a power of 1400 watts. The vertical growing direction, which causes more intense cooling of the samples, allows for an average of 5 to 15 % higher microhardness than the horizontal growing direction. An increase in power from 1100 to 1400 W reduces this difference to zero, but a further increase in power to 1500 W increases the differences by up to 15 % due to a decrease in the microhardness of horizontally grown samples. Regardless of the direction of cultivation, in the entire range of power values (from 1100 to 1500 W), the hardness of 12X18H10T grade steel in the near‒surface areas has values reduced by 15 ‒ 17 % compared to the central region of the samples. The study of the effect of the parameters of the layer deposition mode on the hardness and microhardness of manufactured products made of 12X18H10T grade steel by direct laser cultivation provides the basis for choosing the laser power and understanding its effect on the mechanical properties of stainless steel in different growing directions.
About the authors
Ksenya E. Eremitskaya
Samara National Research University
Author for correspondence.
Email: ksenyaeremitskaya@gmail.com
SPIN-code: 5155-6867
Russian Federation
Ekaterina A. Nosova
Samara National Research University
Email: nosova.ea@ssau.ru
ORCID iD: 0000-0002-5490-3235
SPIN-code: 7286-4426
Andrey V. Balyakin
Samara National Research University
Email: balaykinav@ssau.ru
ORCID iD: 0000-0002-1558-1034
SPIN-code: 2614-5059
References
- Федоров В.Б. Актуальность метода прямого лазерного выращивания в аддитивном производстве. Технологии обработки. Международный журнал гуманитарных и естественных наук. Прочие технологии. 2024;4–5(91):152–156. https://doi.org/10.24412/2500-1000-2024-4-5-152-156
- Ронжин Д.А., Григорьянц А.Г., Холопов А.А. Влияние технологических параметров на структуру металла изделий, полученных методом прямого лазерного выращивания из титанового порошка ВТ-6. Известия высших учебных заведений. Машиностроение. 2022;9(750):30–42.
- https://doi.org/10.18698/0536-1044-2022-9-30-42
- Gong G., Ye J. et al. Research status of laser additive manufacturing for metal: a review. Journal of Materials Research and Technology. 2021;15:855–884.
- https://doi.org/10.1016/j.jmrt.2021.08.050
- Madhavadasa V., Srivastava D. et al. A review on metal additive manufacturing for intricately shaped aerospace components. CIRP J ournal of Manufacturing. Science and Technology. 2022;39:18–36. https://doi.org/10.1016/j.cirpj.2022.07.005
- Грязнов М.Ю., Шотин С.В., Чувильдеев В.Н., Семенычева А.В., Мусяев Р.К., Юхимчук А.А. Повышение механических характеристик нержавеющей стали 316L методом послойного лазерного сплавления и исследование влияния пористости на них. Проблемы прочности и пластичности. 2023;85(3):375–389.
- https://doi.org/10.32326/1814-9146-2023-85-3-375-389
- Zhao C., Bai Y., Zhang Y., Wang X., Xue J.M., Wang H. Influence of scanning strategy and building direction on microstructure and corrosion behaviour of selective laser melted 316L stainless steel. Materials & Design. 2021;209:1–15. https://doi.org/10.1016/j.matdes.2021.109999
- Dwivedi S., Dixit A.R., Kumar A. Wetting behavior of selective laser melted (SLM) biomedical grade stainless steel 316L. Materials Today: Proceedings. 2022;56(1):46–50.
- https://doi.org/10.1016/j.matpr.2021.12.046
- Zhang C., Zhang L., Xu H., Li P., Qian B. Performance of pool boiling with 3D grid structure manufactured by selective laser melting technique. International Journal of Heat and Mass Transfer. 2019;128:570–580.
- https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.021
- Колмаков А.Г., Иванников А.Ю., Каплан М.А., Кирсанкин А.А., Севостьянов М.А. Коррозионностойкие стали в аддитивном производстве. Известия вузов. Черная металлургия. 2021;64(9):619–650.
- https://doi.org/10.17073/0368-0797-2021-9-619-650
- Vukkum V.B., Gupta R.K. Review on corro-sion performance of laser powder-bed fusion printed 316L stainless steel: Effect of processing parameters, manufacturing defects, post-processing, feedstock, and microstructure. Materials & Design. 2022;221:1–45. https://doi.org/10.1016/j.matdes.2022.110874
- Ишкиняев Э.Д., Петровский В.Н., Польский В.Н., Джумаев П.С., Сергеев К.Л., Щекин А.С., Панов Д.В., Ушаков Д.В. Исследование механических характеристик образцов из нержавеющей стали, полученных методом прямого лазерного выращивания. Ядерная физика и инжиниринг. 2019;10(3):233–237. https://doi.org/10.1134/S2079562919020064
- Долгова С.В., Маликов А.Г., Голышев А.А., Никулина А.А. Влияние режимов лазерной наплавки на геометрические размеры стального трека. Обработка металлов: технология, оборудование, инструменты. 2024;26(2):57–70. https://doi.org/10.17212/1994-6309-2024-26.2-57-70
- Скляр М.О., Туричин Г.А., Климова О.Г., Зотов О.Г., Топалов И.К. Исследование влияния параметров прямого лазерного выращивания на микроструктуру изделий из стали 316L. Сталь. 2016;12:71–75.
- Zhang A., Wu W., Wu M., Liu Y., Zhang Y., Wang Q. Influence of laser power on mechanical properties and pitting corrosion behavior of additively manufactured 316L stainless steel by laser powder bed fusion (L-PBF). Optics & Laser Technology. 2024;176:1–17.
- https://doi.org/10.1016/j.optlastec.2024.110886
- Tan Z.E., Pang J.H.L., Kaminski J., Pepin H. Characterisation of porosity, density, and microstructure of directed energy deposited stainless steel AISI 316l. Additive Manufacturing. 2019;25:286–296. https://doi.org/10.1016/j.addma.2018.11.014
- Jardin R.T., Tuninetti V., Tchuindjang J.T., Duchêne L., Hashemi N., Tran H. S., Carrus R., Mertens A., Habraken A. M. Optimizing laser power of directed energy deposition process for homogeneous AISI M4 steel microstructure. Optics & Laser Technology. 2023;163:1–11. https://doi.org/10.1016/j.optlastec.2023.109426
- Mukherjee M. Effect of build geometry and orientation on microstructure and properties of additively manufactured 316L stainless steel by laser metal deposition. Materialia (Elsevier). 2019;7:100359.
- https://doi.org/10.1016/j.mtla.2019.100359
- Feenstra D.R., Cruz V., Gao X., Molotnikov A., Birbilis N. Effect of build height on the properties of large format stainless steel 316L fabricated via directed energy deposition. Additive Manufacturing. 2020;34:1–11.
- https://doi.org/10.1016/j.addma.2020.101205
Supplementary files
