Концентрирование свинца(II) хелатообразующим сорбентом, содержащим фрагменты метафенилендиамина

Обложка

Цитировать

Полный текст

Аннотация

Синтезирован  сорбент  на  основе  сополимера  малеинового  ангидрида  со  стиролом, содержащий фрагменты м-фенилендиамина. Идентификацию полученного сорбента, высушенного при 50–60 °С, проводили методом инфракрасной спектроскопии. Был исследован процесс сорбции свинца синтезированным сорбентом. С этой целью было определено влияние рН среды, времени, ионной силы, концентрации металла на сорбцию. Эксперимент показал, что максимальная сорбция происходит при рН = 6. Полная сорбция свинца(II) происходит после 3 ч контакта металла с сорбентом. Результаты анализа влияния ионной силы на сорбцию показали, что увеличение ионной силы до 0,6 моль/л на сорбцию влияет незаметно, последующее же увеличение приводит к значительному уменьшению сорбции.Построена изотерма сорбции свинца синтезированным сорбентом и исследованы оптимальные условия концентрирования. Результаты анализа показали, что с увеличением концентрации ионов свинца(II) в растворе увеличивается количество сорбированного металла, а при концентрации 6·10-3 моль/л оно становится максимальным (pH = 6, СPb+2 = 6·10-3 моль/л, Vоб. = 20 мл, mсорб. = 0,05 г, СЕ = 405 мг/г). Степень извлечения ионов свинца(II) при оптимальных условиях превышает 95 %. Исследование сорбции проводилось в статических и динамических условиях. Изучено влияние разных минеральных кислот (HClО4, H2SО4, HNО3, HCl) с одинаковой концентрацией на десорбцию свинца(II) из сорбента. Эксперимент показал, что максимальная десорбция свинца(II) происходит в серной кислоте. Таким образом, предлагаемая новая комплексная экспрессная методика, включающая предварительное концентрирование свинца(II) синтезированным сорбентом, позволяет количественно выделять свинец(II) из большого объема пробы со сложным фоновым составом.

Об авторах

Э. Г. Алиев

ОАО «Азерсу»

Email: ciraqov@mail.ru

Ф. Н. Бахманова

Бакинский государственный университет

Email: fidan_chem@rambler.ru

С. З. Гамидов

Бакинский государственный университет

Email: ciraqov@mail.ru

Ф. М. Чырагов

Бакинский государственный университет

Email: ciraqov@mail.ru

Список литературы

  1. Kocot K., Sitko R. Trace and ultratrace determination of heavy metal ions by energy-dispersive X-ray fluorescence spectrometry using graphene as solid sorbent in dispersive micro solid-phase extraction // Spectrochimica Acta. Part B: Atomic Spectroscopy. 2014. Vol. 94-95. P. 7–13. https://doi.org/10.1016/j.sab.2014.02.003
  2. Karadaş C., Kara D. On-line preconcentration and determination of trace elements in waters and reference cereal materials by flow injection – FAAS using newly synthesized 8-hydroxy-2-quinoline carboxaldehyde functionalized Amberlite XAD-4 // Journal of Food Composition and Analysis. 2013. Vol. 32. Issue 1. P. 90–98. https://doi.org/10.1016/j.jfca.2013.07.003
  3. Шачнева Е.Ю., Арчибасова Д.Е. Способы определения свинца в объектах окружающей среды // Астраханский вестник экологического образования 2015. N 2 (32). С. 119–121.
  4. Абдулазиз М.Б., Бахтеев С.А., Юсупов Р.А. Определение свинца в воде в диапазоне концентраций 0,0030–0,0200 мг/л методом РФА ПВО // Вестник Технологического университета. 2016. Т. 19. N 5. С. 104–106.
  5. Onwu F.K., Ogah S.P.I. Studies on the effect of pH on the sorption of cadmium (II), nickel (II), lead (II) and chromium (VI) from aqueous solutions by African white star apple (Chrysophyllum albidium) shell // African Journal of Biotechnology. 2010. Vol. 9. Issue 42. P. 7086–7093. https://doi.org/10.5897/AJB10.267
  6. Sahoo H.B., Tripathy S.B., Equeenuddin S.M., Sahoo P.K. Utilization of ochre as an adsorbent to remove Pb (II) and Cu (II) from contaminated aqueous media // Environmental Earth Sciences. 2014. Vol. 72. Issue 1. P. 243–250. https://doi.org/10.1007/s12665-013-2950-6
  7. Oves M., Khan M.S., Zaidi A. Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil // Saudi Journal of Biological Sciences. 2013. Vol. 20. Issue 2. P. 121–129. https://doi.org/10.1016/j.sjbs.2012.11.006
  8. Pyrzynska K., Stafiej A. Sorption behavior of Cu (II), Pb (II), and Zn (II) onto carbon nanotubes // Solvent Extraction and Ion Exchange. 2012. Vol. 30. Issue 1. P. 41–53. https://doi.org/10.1080/07366299.2011.581056
  9. Алиева Р.А., Абилова У.М., Гусейнова Н.С., Искендеров Г.Б., Чырагов Ф.М. Определение свинца в печени с предварительным концентрированием на хелатообразующем сорбенте //. Азербайджанский фармацевтический и фармакотерапевтический журнал. 2015. N 2. С. 29–32
  10. Aliyeva R.A., Huseynova N.S., Abilova U.M., Iskandarov G.B., Chyragov F.M. Determination of lead (II) in liver corpse of a slaughtered cattle with preconcentration on a chelating sorbent // American Journal of Analytical Chemisty. 2016. Vol. 7. Issue 8. P. 617–622. https://doi.org/10.4236/ajac.2016.78057
  11. Alieva R.A., Abilova U.M., Chyragov F.M., Guseinova N.S. Adsorption-photometric determination of lead in cattle liver // Journal of Analytical Chemistry. 2017. Vol. 72. Issue 11.P. 1161–1166. https://doi.org/10.1134/S1061934817110028
  12. Гаджиева С.Р., Бахманова Ф.Н., Алирзаева Э.Н., Шамилов Н.Т., Чырагов Ф.М. Концентрирование урана хелатообразующим сорбентом на основе сополимера малеинового ангидрида со стиролом // Радиохимия. 2018. Т. 60. N 2. С. 175–179.
  13. Коростелев П.П. Приготовление растворов для химико-аналитических работ. М.: Наука. 1964. 261 с.
  14. Alieva R.A., Veliev V.N., Gamidov S.Z., Chyragov F.M. Preconcentration of molybdenum(VI) on polymeric adsorbents and its photometric determination with bis(2,3,4-trihydroxyphenylazo) benzidine in the presence of 1,10-phenanthroline // Journal of Analytical Chemistry. 2008. Vol. 63. Issue 9. P. 832–835. https://doi.org/10.1134/S1061934808090049
  15. Gouda A.A., Zordok W.A. Solid-phase extraction method for preconcentration of cadmium and lead in environmental samples using multiwalled carbon nanotubes // Turkish Journal of Chemistry. 2018. Vol. 42. P. 1018–1031. https://doi.org/10.3906/kim-1711-90
  16. Alothman Z.A., Yilmaz E., Habila M., Soylak M. Separation and preconcentration of lead(II), cobalt(II), and nickel(II) on EDTA immobilized activated carbon cloth prior to flame atomic absorption spectrometric determination in environmental samples // Turkish Journal of Chemistry. 2015. Vol. 39. Issue 5. P. 1038–1049. https://doi.org/10.3906/kim-1502-65

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».