Comparative analysis of the structural and functional features of endoglucanases with different temperature optima
- Authors: Petukhova O.S.1, Pristavka A.A.1, Pristavka E.A.2, Gavrikov D.E.1, Salovarova V.P.1
-
Affiliations:
- Irkutsk State University
- Institute of Solar-Terrestrial Physics SB RAS
- Issue: Vol 14, No 4 (2024)
- Pages: 596-604
- Section: Physico-chemical biology
- URL: https://bakhtiniada.ru/2227-2925/article/view/302284
- DOI: https://doi.org/10.21285/achb.946
- EDN: https://elibrary.ru/SRPVFQ
- ID: 302284
Cite item
Full Text
Abstract
About the authors
O. S. Petukhova
Irkutsk State University
Email: petukhova4olga@gmail.com
A. A. Pristavka
Irkutsk State University
Email: pristavk@gmail.com
E. A. Pristavka
Institute of Solar-Terrestrial Physics SB RAS
Email: pristavkaegor03@gmail.com
D. E. Gavrikov
Irkutsk State University
Email: dega.irk@gmail.com
V. P. Salovarova
Irkutsk State University
Email: vsalovarova@gmail.com
References
- Клесов А.А., Григораш С.Ю. Ферментативный гидролиз целлюлозы. Регуляторное влияние нерастворимого субстрата на эффективность ферментативной реакции // Биохимия. 1982. Т. 47. N 3. С. 409–418.
- Singhania R.R., Adsul M., Pandey A., Patel A.K. Cellulases // Current developments in biotechnology and bioengineering / eds A. Pandey, S. Negi, C.R. Soccol. Elsevier, 2017. P. 73–101. doi: 10.1016/B978-0-444-63662-1.00004-X.
- Ahmed A., Bibi A. Fungal cellulase; production and applications: minireview // LIFE: International Journal of Health and Life-Sciences. 2018. Vol. 4, no. 1. P. 19–36. doi: 10.20319/lijhls.2018.41.1936.
- Magrey A., Sahay S., Gothalwal R. Cellulases for biofuel: a review // International Journal of Recent Trends in Science and Technology. 2018. P. 17–25. Available from: https://www.statperson.com/Journal/ScienceAndTechnology/Article/SpecialIssue/ACAEE_4.pdf.
- Srivastava N., Srivastava M., Mishra P.K., Gupta V.K., Molina G., Rodriguez-Couto S., et al. Applications of fungal cellulases in biofuel production: advances and limitations // Renewable and Sustainable Energy Reviews. 2018. Vol. 82. P. 2379–2386. doi: 10.1016/j.rser.2017.08.074.
- Chang W.H., Lai A.G. Mixed evolutionary origins of endogenous biomass-depolymerizing enzymes in animals // BMC Genomics. 2018. Vol. 19. P. 483. doi: 10.1186/s12864-018-4861-0.
- Thapa S., Mishra J., Arora N., Mishra P., Li H., O′Hair J., et al. Microbial cellulolytic enzymes: diversity and biotechnology with reference to lignocellulosic biomass degradation // Reviews in Environmental Science and Bio/Technology. 2020. Vol. 19. P. 621–648. doi: 10.1007/s11157-020-09536-y.
- Ajeje S.B., Hu Y., Song G., Peter S.B., Afful R.G., Sun F., et al. Thermostable cellulases / xylanases from thermophilic and hyperthermophilic microorganisms: current perspective // Frontiers in Bioengineering and Biotechnology. 2021. Vol. 9. P. 794304. doi: 10.3389/fbioe.2021.794304.
- Akram F., ul Haq I., Aqeel A., Ahmed Z., Shah F.I. Thermostable cellulases: structure, catalytic mechanisms, directed evolution and industrial implementations // Renewable and Sustainable Energy Reviews. 2021. Vol. 151. P. 111597. doi: 10.1016/j.rser.2021.111597.
- Akram F., ul Haq I., Imran W., Mukhtar H. Insight perspectives of thermostable endoglucanases for bioethanol production: a review // Renewable Energy. 2018. Vol. 122. P. 225–238. doi: 10.1016/j.renene.2018.01.095.
- Cai L.-N., Xu S.-N., Lu T., Lin D.-Q., Yao S.-J. Salt-tolerant and thermostable mechanisms of an endoglucanase from marine Aspergillus niger // Bioresources and Bioprocessing. 2022. Vol. 9. P. 44. doi: 10.1186/s40643-022-00533-3.
- Kasana R.C., Gulati A. Cellulases from psychrophilic microorganisms: a review // Journal of Basic Microbiology. 2011. Vol. 51, no. 6. P. 572–579. doi: 10.1002/jobm.201000385.
- Chavan S., Shete A., Mirza Y., Dharne M.S. Investigation of cold-active and mesophilic cellulases: opportunities awaited // Biomass Conversion and Biorefinery. 2023. Vol. 13. P. 8829–8852. doi: 10.1007/s13399-021-02047-y.
- Gupta S.K., Kataki S., Chatterjee S., Prasad R.K., Datta S., Vairale M.G., et al. Cold adaptation in bacteria with special focus on cellulase production and its potential application // Journal of Cleaner Production. 2020. Vol. 258. P. 120351. doi: 10.1016/j.jclepro.2020.120351.
- Yunus G., Kuddus M. Cold-active microbial cellulase: novel approach to understand mechanism and its applications in food and beverages industry // Journal of Microbiology, Biotechnology and Food Sciences. 2021. Vol. 10, no. 4. P. 524–530. doi: 10.15414/jmbfs.2021.10.4.524-530.
- Yusof N.A., Hashim N.H.F., Bharudin I. Cold adaptation strategies and the potential of psychrophilic enzymes from the Antarctic yeast, Glaciozyma antarctica PI12 // Journal of Fungi. 2021. Vol. 7, no. 7. P. 528. doi: 10.3390/jof7070528.
- Öten A.M., Atak E., Karaca B.T., Fırtına S., Kutlu A. Discussing the roles of proline and glycine from the perspective of cold adaptation in lipases and cellulases // Biocatalysis and Biotransformation. 2023. Vol. 41, no. 4. P. 243–260. doi: 10.1080/10242422.2022.2124111.
- Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., et al. SWISS-MODEL: homology modelling of protein structures and complexes // Nucleic Acids Research. 2018. Vol. 46, no. W1. P. W296–W303. doi: 10.1093/nar/gky427.
- Tamura K., Stecher G., Kumar S. MEGA11: molecular evolutionary genetics analysis version 11 // Molecular Biology and Evolution. 2021. Vol. 38, no. 7. P. 3022–3027. doi: 10.1093/molbev/msab120.
- Farias S.T., Bonato M.C.M. Preferred amino acids and thermostability // Genetics and Molecular Research. 2003. Vol. 2, no. 4. P. 383–393.
Supplementary files
