Native organization of alternative NAD(P)H-dehydrogenases NDA and NDB in mitochondria of etiolated pea sprouts
- Authors: Ukolova I.V.1, Kondakova M.A.1, Borovskii G.B.1
-
Affiliations:
- Siberian Institute of Plant Physiology and Biochemistry SB RAS
- Issue: Vol 14, No 3 (2024)
- Pages: 421-427
- Section: Brief communication
- URL: https://bakhtiniada.ru/2227-2925/article/view/302267
- DOI: https://doi.org/10.21285/achb.926
- EDN: https://elibrary.ru/OLEORE
- ID: 302267
Cite item
Full Text
Abstract
About the authors
I. V. Ukolova
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Email: irinastupnikova@mail.ru
M. A. Kondakova
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Email: kondakova-marina@mail.ru
G. B. Borovskii
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Email: borovskii@sifibr.irk.ru
References
- Cogliati S., Cabrera-Alarcón J.L., Enriquez J.A. Regulation and functional role of the electron transport chain supercomplexes // Biochemical Society Transactions. 2021. Vol. 49, no. 6. P. 2655–2668. doi: 10.1042/BST20210460.
- Kohler A., Barrientos A., Fontanesi F., Ott M. The functional significance of mitochondrial respiratory chain supercomplexes // EMBO Reports. 2023. Vol. 24, no. 11. P. e57092. doi: 10.15252/embr.202357092.
- Kühlbrandt W. Structure and mechanisms of F-type ATP synthases // Annual Review of Biochemistry. 2019. Vol. 88. P. 515–549. doi: 10.1146/annurev-biochem-013118-110903.
- Ukolova I.V. The subcompartmented oxphosomic model of the phosphorylating system organization in mitochondria // Вавиловский журнал генетики и селекции. 2021. Т. 25. N 7. С. 778–786. doi: 10.18699/VJ21.089. EDN: VRUFFV.
- Møller I.M., Rasmusson A.G., Van Aken O. Plant mitochondria – past, present and future // The Plant Journal. 2021. Vol. 108, no. 4. P. 912–959. doi: 10.1111/tpj.15495.
- Rasmusson A.G., Geisler D.A., Møller I.M. The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria // Mitochondrion. 2008. Vol. 8, no. 1. P. 47–60. doi: 10.1016/j.mito.2007.10.004.
- Sweetman C., Waterman C.D., Rainbird B.M., Smith P.M.C., Jenkins C.D., Day D.A., et al. AtNDB2 is the main external NADH dehydrogenase in mitochondria and is important for tolerance to environmental stress // Plant Physiology. 2019. Vol. 181, no. 2. P. 774–788. doi: 10.1104/pp.19.00877.
- Гармаш Е.В. Сигнальные пути регуляции экспрессии генов альтернативной оксидазы растений // Физиология растений. 2022. Т. 69. N 1. С. 3–19. doi: 10.31857/S0015330322010055. EDN: AATESI.
- Braun H.-P. The Oxidative Phosphorylation system of the mitochondria in plants // Mitochondrion. 2020. Vol. 53. P. 66–75. doi: 10.1016/j.mito.2020.04.007.
- Grandier-Vazeille X., Bathany K., Chaignepain S., Camougrand N., Manon S., Schmitter J.M. Yeast mitochondrial dehydrogenases are associated in a supramolecular complex // Biochemistry. 2001. Vol. 40, no. 33. P. 9758–9769. doi: 10.1021/bi010277r.
- Guerrero-Castillo S., Vázquez-Acevedo M., González-Halphen D., Uribe-Carvajal S. In Yarrowia lipolytica mitochondria, the alternative NADH dehydrogenase interacts specifically with the cytochrome complexes of the classic respiratory pathway // Biochimica et Biophysica Acta. 2009. Vol. 1787, no. 2. P. 75–85. doi: 10.1016/j.bbabio.2008.10.008.
- Matus-Ortega M.G., Cárdenas-Monroy C.A., Flores-Herrera O., Mendoza-Hernández G., Miranda M., González-Pedrajo B., et al. New complexes containing the internal alternative NADH dehydrogenase (Ndi1) in mitochondria of Saccharomyces cerevisiae // Yeast. 2015. Vol. 32, no. 10. P. 629–641. doi: 10.1002/yea.3086.
- Senkler J., Senkler M., Eubel H., Hildebrandt T., Lengwenus C., Schertl P., et al. The mitochondrial complexome of Arabidopsis thaliana // The Plant Journal. 2017. Vol. 89, no. 6. P. 1079–1092. doi: 10.1111/tpj.13448.
- Ukolova I.V., Kondakova M.A., Kondratov I.G., Sidorov A.V., Borovskii G.B., Voinikov V.K. New insights into the organisation of the oxidative phosphorylation system in the example of pea shoot mitochondria // Biochimica et Biophysica Acta – Bioenergetics. 2020. Vol. 1861, no. 11. P. 148264. doi: 10.1016/j.bbabio.2020.148264.
- Schägger H. Blue-native gels to isolate protein complexes from mitochondria // Methods in Cell Biology. 2001. Vol. 65. P. 231–244. doi: 10.1016/S0091-679X(01)65014-3.
- Wittig I., Braun H.-P., Schägger H. Blue native PAGE // Nature Protocols. 2006. Vol. 1, no. 1. P. 418–428. doi: 10.1038/nprot.2006.62.
- Sabar M., Balk J., Leaver C.J. Histochemical staining and quantification of plant mitochondrial respiratory chain complexes using blue-native polyacrylamide gel electrophoresis // The Plant Journal. 2005. Vol. 44, no. 5. P. 893–901. doi: 10.1111/j.1365-313X.2005.02577.x.
- Svensson A.S., Rasmusson A.G. Light-dependent gene expression for proteins in the respiratory chain of potato leaves // The Plant Journal. 2001. Vol. 28, no. 1. P. 73–82. doi: 10.1046/j.1365-313x.2001.01128.x.
- Ukolova I.V., Borovskii G.B. OXPHOS organization and activity in mitochondria of plants with different life strategies // International Journal of Molecular Sciences. 2023. Vol. 24, no. 20. P. 15229. doi: 10.3390/ijms242015229.
- Кондакова М.А., Уколова И.В., Боровский Г.Б., Войников В.К. Новые суперкомплексы в системе окислительного фосфорилирования митохондрий проростков гороха Pisum sativum L. // Известия вузов. Прикладная химия и биотехнология. 2016. Т. 6. N 3. С. 143–146. doi: 10.21285/2227-2925-2016-6-3-143-146. EDN: WZQKGF.
- Rasmusson A.G., Agius S.C. Rotenone-insensitive NAD(P)H dehydrogenases in plants: immunodetection and distribution of native proteins in mitochondria // Plant Physiology and Biochemistry. 2001. Vol. 39, no. 12. P. 1057–1066. doi: 10.1016/S0981-9428(01)01334-1.
- Antos-Krzeminska N., Jarmuszkiewicz W. Alternative type II NAD(P)H dehydrogenases in the mitochondria of protists and fungi // Protist. 2019. Vol. 170, no. 1. P. 21–37. doi: 10.1016/j.protis.2018.11.001.
Supplementary files
