Antibiotic study of non-polar microalgae extract Chlorella sorokiniana against gram-positive bacteria

Cover Page

Cite item

Full Text

Abstract

A study of the antibacterial properties of a non-polar extract of microalgae Chlorella sorokiniana on gram-positive bacteria is presented along with a determination of the minimum inhibitory concentrations of the mixture and the individual metabolites that make up the extract. A regular effect of illumination on the intensity of the antibiotic effect of non-polar microalgae extract on gram-positive bacteria is demonstrated. A mixture of substances extracted from disintegrated cells of the microalgae biomass Chlorella sorokiniana has an inhibitory effect on bacterial growth at a photosynthetically active radiation level of 100±6 μmol photons/(m2×s). The minimum effective amount of the extract is 330±11.09 µg. When analysing the chemical structure of the components of the non-polar fraction extracted from the cells of microalgae Chlorella sorokiniana, the composition of the non-polar extract was shown to include triacylglycerides, fatty acids, o-dialkyl monoglycerides and ethers of sterols or waxes, or trialkyl esters of glycerol. When studying the antibiotic properties of individual fractions of substances, triacylglycerides and fatty acids were found to have an antibiotic effect on gram-positive bacteria. In this case, the minimum effective amount of triacylglycerides is 400±13.37 μg, while that of fatty acids is 600±20.05 μg. The combined effect of a mixture of non-polar extract substances gives the most pronounced antibiotic effect on gram-positive bacteria at a photosynthetically active radiation level of 100±6 μmol of photons/(m2×s). Thus, an increase in antibacterial action was demonstrated when using a mixture of substances of the non-polar extract of microalgae Chlorella sorokiniana at a photosynthetically active radiation level of 100±6 μmol of photons/(m2×s).

About the authors

Ya. V. Ustinskaya

Tambov State Technical University

Email: ustinskaya.yana@yandex.ru

M. S. Temnov

Tambov State Technical University

Email: temnov.mihail@mail.ru

M. A. Eskova

Tambov State Technical University

Email: mashaeskova@yandex.ru

K. I. Meronyuk

Tambov State Technical University

Email: mirych.87@yandex.ru

D. S. Dvoretsky

Tambov State Technical University

Email: dvoretsky@yahoo.com

References

  1. Dolganyuk V., Belova D., Babich O., Prosekov A., Ivanova S., Katserov D., et al. Microalgae: a promising source of valuable bioproducts // Biomolecules. 2020. Vol. 10, no. 8. P. 1153. doi: 10.3390/biom10081153.
  2. Хвойников А.Н., Сангалова Е.Д., Орлова О.Ю. Тенденции и статистика развития рынка микроводорослей // Вестник Алтайской академии экономики и права. 2021. N 4-2. С. 278–282. doi: 10.17513/vaael.1678. EDN: EPKIEX.
  3. Dvoretsky D.S., Temnov M.S., Markin I.V., Ustinskaya Ya.V., Es’kova M.A. Problems in the development of efficient biotechnology for the synthesis of valuable components from microalgae biomass // Theoretical Foundations of Chemical Engineering. 2022. Vol. 56. P. 425–439. doi: 10.1134/S0040579522040224.
  4. Pratt R., Daniels T.C., Eiler J.J., Gunnison J.B., Kumler W.D., Oneto J.F., et al. Chlorellin, an antibacterial substance from Chlorella // Science. 1944. Vol. 99, no. 2574. P. 351–352. doi: 10.1126/science.99.2574.351.
  5. Sukhikh S., Prosekov A., Ivanova S., Maslennikov P. Andreeva A., Budenkova E., et al. Identification of metabolites with antibacterial activities by analyzing the FTIR spectra of microalgae // Life. 2022. Vol. 12, no. 9. P. 1395. doi: 10.3390/life12091395.
  6. Cepas V., Gutiérrez-Del-Río I., López Y., Redondo-Blanco S., Gabasa Y., Iglesias M.J., et al. Microalgae and cyanobacteria strains as producers of lipids with antibacterial and antibiofilm activity // Marine Drugs. 2021. Vol. 19, no. 12. P. 675. doi: 10.3390/md19120675.
  7. Селиванова Е.А., Игнатенко М.Е., Немцева Н.В. Антагонистическая активность новых штаммов зеленых микроводорослей // Журнал микробиологии, эпидемиологии и иммунобиологии. 2014. N 4. С. 72–76. EDN: UDQWPD.
  8. Субботина Ю.М., Шопинская М.И. Механизм антибактериального действия фитопланктона и высшей водной растительности на процессы самоочищения сточных вод // Отходы, причины их образования и перспективы использования: сб. науч. тр. по мат. Междунар. науч. эколог. конф. (г. Краснодар, 26–27 марта 2019 г.). Краснодар: Изд-во КубГАУ, 2019. С. 441–445. EDN: WFYGCS.
  9. Лысенко Ю.А., Мачнева Н.Л., Борисенко В.В., Николаенко В.И. Антибактериальная активность микроводоросли // Молодой ученый. 2015. N 5-1. С. 17–20. EDN: TKLEMD.
  10. Dolganyuk V., Andreeva A., Sukhikh S., Kashirskikh E., Prosekov A., Ivanova S., et al. Study of the physicochemical and biological properties of the lipid complex of marine microalgae isolated from the coastal areas of the eastern water area of the Baltic Sea // Molecules. 2022. Vol. 27, no. 18. P. 5871. doi: 10.3390/molecules27185871.
  11. Dvoretsky D.S., Dvoretsky S.I., Temnov M.S., Markin I.V., Akulinin E.I., Golubyatnikov O.O., et al. Experimental research into the antibiotic properties of Chlorella vulgaris algal exometabolites // Chemical Engineering Transactions. 2019. Vol. 74. P. 1429–1434. doi: 10.3303/CET1974239.
  12. Amiguet V.T., Jewell L.E., Mao H., Sharma M., Hudson J.B., Durst T., et al. Antibacterial properties of a glycolipid-rich extract and active principle from Nunavik collections of the macroalgae Fucus evanescens C. Agardh (Fucaceae) // Canadian Journal of Microbiology. 2011. Vol. 57, no. 9. P. 745–749. doi: 10.1139/w11-065.
  13. Темнов М.С., Устинская Я.В., Еськова М.А., Меронюк К.И., Дворецкий Д.С. Сравнительный анализ методов дезинтеграции клеток Chlorella sorokiniana, повышающих эффективность экстракции внутриклеточных водорастворимых белков // Известия высших учебных заведений. Серия Химия и химическая технология. 2022. Т. 65. N 4. С. 79–86. doi: 10.6060/ivkkt.20226504.6527. EDN: ONRZQP.
  14. Señoráns M., Castejón N., Señoráns F.J. Advanced extraction of lipids with DHA from Isochrysis galbana with enzymatic pre-treatment combined with pressurized liquids and ultrasound assisted extractions // Molecules. 2020. Vol. 25, no. 14. P. 3310. doi: 10.3390/molecules25143310.
  15. Кирхнер Ю. Тонкослойная хроматография / пер. с англ. М.: Мир, 1981. В 2 т. Т. 1. 616 с.
  16. Boulygina E.S., Kuznetsov B.B., Marusina A.I., Kolganova T.V., Tourova T.P., Kravchenko I.K., Bykova S.A., et al. A study of nucleotide sequences of nifH genes of some methanotrophic bacteria // Microbiology. 2002. Vol. 71, no. 4. P. 425–432. doi: 10.1023/A:1019893526803. EDN: LHIQFR.
  17. Lane D.J. 16S/23S rRNA sequencing // Nucleic acid techniques in bacterial systematics / eds E. Stackebrandt, M. Goodfellow. Chichester: John Wiley & Sons, 1991. P. 115–175.
  18. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors // Proceedings of the National Academy of Sciences. 1977. Vol. 74, no. 12. P. 5463–5467. doi: 10.1073/pnas.74.12.5463.
  19. Rubin A.B. Compendium of biophysics. Hoboken: John Wiley & Sons, 2017. 660 p.
  20. Stirk W.A., van Staden J. Bioprospecting for bioactive compounds in microalgae: antimicrobial compounds // Biotechnology Advances. 2022. Vol. 59. P. 107977. doi: 10.1016/j.biotechadv.2022.107977.
  21. Coronado-Reyes J.A., Salazar-Torres J.A., Juárez-Campos B., Gonzalez-Hernandez J.C. Chlorella vulgaris, a microalgae important to be used in biotechnology: a review // Food Science and Technology. 2022. Vol. 42. P. 37320. doi: 10.1590/fst.37320.
  22. Alsenani F., Tupally K.R., Chuac E.T., Eltanahy E., Alsufyani H., Parekh H.S., et al. Evaluation of microalgae and cyanobacteria as potential sources of antimicrobial compounds // Saudi Pharmaceutical Journal. 2020. Vol. 28, no. 12. P. 1834–1841. doi: 10.1016/j.jsps.2020.11.010.
  23. Рыбин В.Г., Блинов Ю.Г. Антимикробные свойства липидов // Известия ТИНРО. 2001. Т. 129. С. 179–196. EDN: HSKZCR.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».