Impurity-impurity interaction during the growth of UMG-Si-based mc-Si

Cover Page

Cite item

Full Text

Abstract

This article investigates the relationship between the chemical composition and electrophysical properties of p- and n-type multicrystalline silicon ingots based on metallurgical silicon with a purity of 99.99 at.%. In particular, the role of impurity-impurity interactions in the production of multisilicon by the Bridgman vertical method is evaluated in order to identify approaches to controlling this process effectively. The phase equilibrium calculations in the “silicon–all impurities” and “silicon-impurity-oxygen” systems were carried out based on the Gibbs energy minimization in the Selector software package. The study investigates the rank correlations of the concentrations of various impurities with each other, as well as with the specified electrical resistivity (SER) and the lifetime of nonequilibrium charge carriers (NCC) in the direction of crystal growth. Pair correlations of the element distribution profiles were considered based on the role of the main factor represented by the ratio of individual impurity solubilities in solid or liquid silicon (k0), as well as from the standpoint of direct interaction between two elements. It was found that the k0 value for two individual impurities in silicon does not automatically lead to the pair correlation of their distribution profiles in the ingot. A significant effect on the distribution profiles of impurities in multisilicon with k0→0 has the factor of binding some part of the impurity into such a form that this impurity can be incorporated easily into a growing crystal. Binding may be induced by the interaction of the impurity in the melt with the oxygen background, its segregation at the grain boundaries, and its capture by the crystallization front in the composition of the liquid inclusion. Significant correlations of impurity distribution profiles in the ingot were demonstrated by the pairs whose elements interact without the formation of chemical compounds in the 25–1413 °C temperature range. The conducted phase equilibrium calculations for the “silicon–all impurities” system revealed the possibility of forming the VB2, TiB2, ZrB2, and MgTiO4 solid phases in the melt.

About the authors

R. V. Presnyakov

Vinogradov Institute of Geochemistry SB RAS

Email: ropr81@mail.ru

S. M. Peshcherova

Vinogradov Institute of Geochemistry SB RAS

Email: spescherova@mail.ru

A. G. Chueshova

Vinogradov Institute of Geochemistry SB RAS

Email: trill6521@yandex.ru

V. A. Bychinskii

Vinogradov Institute of Geochemistry SB RAS

Email: val@igc.irk.ru

A. I. Nepomnyashchikh

Vinogradov Institute of Geochemistry SB RAS

Email: ainep@igc.irk.ru

References

  1. Nakajima K., Usami N. Crystal growth of silicon for solar cells. Berlin: Springer, 2009. 269 p.
  2. Osinniy V., Bomholt P., Nylandsted Larsen A., Enebakk E., Søiland A.-K., Tronstad R., et al. Factors limiting minority carrier lifetime in solar grade silicon produced by the metallurgical route // Solar Energy Materials and Solar Cells. 2011. Vol. 95, no. 2. P. 564–572. https://doi.org/10.1016/j.solmat.2010.09.017.
  3. Chen J.-W., Milnes A. G. Energy levels in silicon // Annual Review of Materials Research. 1980. Vol. 10. P. 157–228. https://doi.org/10.1146/annurev.ms.10.080180.001105.
  4. Bathey B. R., Cretella M. C. Solar-grade silicon // Journal of Materials Science. 1982. Vol. 17. P. 3077–3096. https://doi.org/10.1007/BF01203469.
  5. Непомнящих А. И., Пресняков Р. В. Распределение примесей в процессе выращивания мультикристаллического кремния // Неорганические материалы. 2018. Т. 54. N 4. С. 335–339. https://doi.org/10.7868/S0002337X18040012.
  6. Непомнящих А. И., Пресняков Р. В., Антонов П. В., Бердников В. С. Влияние режима выращивания на макроструктуру слитка мультикристаллического кремния // Известия вузов. Прикладная химия и биотехнология. 2012. N 1. С. 28–34.
  7. Басин А. С., Шишкин A. В. Получение кремниевых пластин для солнечной энергетики. Методы и технологии. Новосибирск: Ин-т теплофизики СО РАН, 2000. 195 с.
  8. Chase M. W., Davies C. A., Downey J. R., Frurip D. J., McDonald R. A., Syverud A. N. JANAF thermochemical tables // Journal of Physical and Chemical Reference Data. 1985. Issue 14. P. 927–1856.
  9. Martorano M. A., Ferreira Neto J. B., OliveiraT. S., Tsubaki T. O. Refining of metallurgical silicon by directional solidification // Materials Science and Engineering: B. 2011. Vol. 176, no. 3. P. 217–226. https://doi.org/10.1016/j.mseb.2010.11.010.
  10. Yokokawa H. Tables of thermodynamic functions for inorganic compounds // Journal National Chemical Laboratory for Industry. 1988. Vol. 83. P. 27–121.
  11. Мюллер Г. Выращивание кристаллов из расплава. Конвекция и неоднородности / пер. с англ. А. В. Бунэ. М.: Мир, 1991. 149 с.
  12. Баранник С. В., Канищев В. Н. Особенности начального переходного процесса кристаллизации бинарного расплава // Кристаллография. 2010. Т. 55. N 5. С. 935–939.
  13. Beatty K. M., Jackson K. A. Monte Carlo modeling of silicon crystal growth // Journal of Crystal Growth. 2000. Vol. 211, no. 1-4. P. 13–17. https://doi.org/10.1016/S0022-0248(99)00836-2.
  14. Dalaker H. Thermodynamic computations of the interaction coefficients between boron and phosphorus and common impurity elements in liquid silicon // Computer Methods in Materials Science. 2013. Vol. 13, no. 3. P. 407–411.
  15. Tang K., Øvrelid E. J., Tranell G., Tangstad M. A thermochemical database for the solar cell silicon materials // Materials Transactions. 2009. Vol. 50, no. 8. P. 1978–1984. https://doi.org/10.2320/matertrans.M2009110.
  16. Прокофьева В. К., Соколов Е. Б., Суанов М. Е., Карамов А. Г. Влияние примесей Ti, Zr, Hf на процесс очистки кремния от кислорода // Высокочистые вещества. 1988. N 6. С. 72–74.
  17. Соколов Е. Б., Прокофьева В. К., Белянина Е. В. Кремний, полученный с использованием геттерирования расплава // Электронная промышленность. 1995. Т. 4. N 5. С. 68–69.
  18. Харбеке Г. Поликристаллические полупроводники. Физические свойства и применения / пер. с англ. М.: Мир, 1989. 341 с.
  19. Рейви К. Дефекты и примеси в полупроводниковом кремнии / пер. с англ. М.: Мир, 1984. 475 с.
  20. Красников Г. Я., Зайцев Н. А. Система кремний-диоксид кремния субмикронных СБИС. М.: Техносфера, 2003. 384 с.
  21. Knack S. Copper-related defects in silicon // Materials Science in Semiconductor Processing. 2004. Vol. 7, no. 3. P. 125–141. https://doi.org/10.1016/j.mssp.2004.06.002.
  22. Dubois S., Enjalbert N., Garandet J. P. Effects of the compensation level on the carrier lifetime of crystalline silicon // Applied Physics Letters. 2008. Vol. 93, no. 3. P. 032114. https://doi.org/10.1063/1.2961030.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».