Bacterial nanocellulose and softwood pulp for composite paper
- Authors: Gismatulina Y.A.1, Budaeva V.V.1, Sitnikova A.E.1, Bychin N.V.1, Gladysheva E.K.1, Shavyrkina N.A.1, Mironova G.F.1, Sevastyanova Y.V.2
-
Affiliations:
- Institute for Problems of Chemical and Energetic Technologies of the SB RAS
- Northern (Arctic) Federal University named after M.V. Lomonosov
- Issue: Vol 11, No 3 (2021)
- Pages: 460-471
- Section: Physico-chemical biology
- URL: https://bakhtiniada.ru/2227-2925/article/view/301107
- DOI: https://doi.org/10.21285/2227-2925-2021-11-3-460-471
- ID: 301107
Cite item
Full Text
Abstract
About the authors
Yu. A. Gismatulina
Institute for Problems of Chemical and Energetic Technologies of the SB RAS
Email: julja.gismatulina@rambler.ru
V. V. Budaeva
Institute for Problems of Chemical and Energetic Technologies of the SB RAS
Email: budaeva@ipcet.ru
A. E. Sitnikova
Institute for Problems of Chemical and Energetic Technologies of the SB RAS
Email: sitnikova97.97@mail.ru
N. V. Bychin
Institute for Problems of Chemical and Energetic Technologies of the SB RAS
Email: nbych@yandex.ru
E. K. Gladysheva
Institute for Problems of Chemical and Energetic Technologies of the SB RAS
Email: evg-gladysheva@yandex.ru
N. A. Shavyrkina
Institute for Problems of Chemical and Energetic Technologies of the SB RAS
Email: 32nadina@mail.ru
G. F. Mironova
Institute for Problems of Chemical and Energetic Technologies of the SB RAS
Email: yur_galina@mail.ru
Yu. V. Sevastyanova
Northern (Arctic) Federal University named after M.V. Lomonosov
Email: ysevastyanova@yandex.ru
References
- Gama M., Dourado F., Bielecki S. Bacterial nanocellulose. From biotechnology to bio-economy. Amsterdam: Elsevier, 2016. 260 p.
- Isik Z., Unyayar A., Dizge N. Filtration and Antibacterial Properties of Bacterial Cellulose Membranes for Textile Wastewater Treatment // Avicenna Journal of Environmental Health Engineering. 2018. Vol. 5. Issue 2. P. 106–114. https://doi.org/10.15171/ajehe.2018.14
- Skočaj M. Bacterial nanocellulose in papermaking // Cellulose. 2019. Vol. 26. Issue 8-9. P. 6477–6488. https://doi.org/10.1007/s10570-019-02566-y
- Alves A.A., Silva W.E., Belian M.F., Lins L.S.G., Galembeck A. Bacterial cellulose membranes for environmental water remediation and industrial wastewater treatment // International Journal of Environmental Science and Technology. 2020. Vol. 17. Issue 7. P. 3997–4008. https://doi.org/10.1007/s13762-020-02746-5
- Wu A., Hu X., Ao H., Chen Z., Chu Z., Jiang T., et al. Rational design of bacterial cellulose-based air filter with antibacterial activity for highly efficient particulate matters removal // Nano Select. 2021. Vol. 1. https://doi.org/10.1002/nano.202100086
- Keshk S.M. Bacterial Cellulose Production and its Industrial Applications // Journal of Bioprocessing & Biotechniques. 2014. Vol. 4. Issue 2. Article number 1000150. https://doi.org/10.4172/2155-9821.1000150
- Velásquez-Riaño M., Bojacá V. Production of bacterial cellulose from alternative low-cost substrates // Cellulose. 2017. Vol. 24. Issue 7. P. 2677– 2698. https://doi.org/10.1007/s10570-017-1309-7
- Hussain Z., Sajjad W., Khan T., Wahid F. Production of bacterial cellulose from industrial wastes: a review // Cellulose. 2019. Vol. 26. Issue 5. P. 2895–2911. https://doi.org/10.1007/s10570-019-02307-1
- Gregory D.A., Tripathi L., Fricker A.T.R., Asare E., Orlando I., Raghavendran V., et al. Bacterial cellulose: A smart biomaterial with diverse applications // Materials Science and Engineering: R: Reports. 2021. Vol. 145. N 100623. https://doi.org/10.1016/j.mser.2021.100623
- Santmarti A., Liu H.W., Herrera N., Lee K.-Y. Anomalous tensile response of bacterial cellulose nanopaper at intermediate strain rates // Scientific Reports. 2020. Vol. 10. Issue 1. Article number 15260. https://doi.org/10.1038/s41598-020-72153-w
- Смирнова Е.Г., Лоцманова Е.М. Применение бактериальной целлюлозы в композиции бумажной массы для механизированной реставрации старинных документов // Вестник Санкт-Петербургского государственного университета технологии и дизайна. Серия 1: Естественные и технические науки. 2019. N 2. С. 83–87.
- Santos S.M., Carbajo J.M., Gómez N., Ladero M., Villar J.C. Paper reinforcing by in situ growth of bacterial cellulose // Journal of Materials Science. 2017. Vol. 52. Issue 10. P. 5882–5893. https://doi.org/10.1007/s10853-017-0824-0
- Смирнова Е.Г., Лоцманова Е.М., Журавлева Н.М., Резник А.С., Вураско А.В., Дрикер Б.Н.. Материалы из нетрадиционных видов волокон: технологии получения, свойства, перспективы применения: монография / под ред. А.В. Вураско. Екатеринбург: Изд-во УГЛТУ, 2020. 252 с.
- Morena A.G., Roncero M.B., Valenzuela S.V., Valls C., Vidal T., Pastor F.I.J., et al. Laccase/ TEMPO-mediated bacterial cellulose functionalization: production of paper-silver nanoparticles composite with antimicrobial activity // Cellulose. 2019. Vol. 26. Issue 1. P. 8655–8668. https://doi.org/10.1007/s10570-019-02678-5
- Phutanon N., Motina K., Chang Y.-H., Ummartyotin S. Development of CuO particles onto bacterial cellulose sheets by forced hydrolysis: a synergistic approach for generating sheets with photocatalytic and antibiofouling properties // International Journal of Biological Macromolecules. 2019. Vol. 136. P. 1142–1152. https://doi.org/10.1016/j.ijbiomac.2019.06.168
- Lin D., Liu Z., Shen R., Chen S., Yang X. Bacterial cellulose in food industry: Current research and future prospects // International Journal of Biological Macromolecules. 2020. Vol. 158. P. 1007– 1019. https://doi.org/10.1016/j.ijbiomac.2020.04.230
- Buruaga-Ramiro C., Valenzuela S.V., Valls C., Roncero M.B., Pastor F.I.J., Díaz P., Martinez J. Development of an antimicrobial bioactive paper made from bacterial cellulose // International Journal of Biological Macromolecules. 2020. Vol. 158. P. 587–594. https://doi.org/10.1016/j.ijbiomac.2020.04.234
- Luo H., Xie J., Xiong L., Zhu Y., Yang Z., Wan Y. Fabrication of flexible, ultra-strong, and highly conductive bacterial cellulose-based paper by engineering dispersion of graphene nanosheets // Composites Part B: Engineering. 2019. Vol. 162. P. 484–490. https://doi.org/10.1016/j.compositesb.2019.01.027
- Zhuravleva N.M., Reznik A.S., Kiesewetter D.V., Stolpner A.M., Smirnova E.G., Khripunov A.K. Improving the efficiency of power transformers insulation by modifying the dielectric paper with bacterial cellulose // Journal of Physics: Conference Series. 2019. N 012002. https://doi.org/10.1088/1742-6596/1236/1/012002
- Zhuravleva N.M., Reznik A.S., Kiesewetter D.V., Stolpner A.M., Smirnova E.G., Budaeva V.V. Improvement of properties of cellulose dielectrics by their structure modification with nanocellulose produced of wastes of agricultural crops // Journal of Physics: Conference Series. 2020. Vol. 1410. N 012068. https://doi.org/10.1088/1742-6596/1410/1/012068
- Cabañas-Romero L.V., Valls C., Valenzuela S.V., Roncero M.B., Pastor F.I.J., Diaz P., et al. Bacterial cellulose–chitosan paper with antimicrobial and antioxidant activities // Biomacromolecules. 2020. Vol. 21. Issue 4. P. 1568–1577. https://doi.org/10.1021/acs.biomac.0c00127
- Buruaga-Ramiro C., Valenzuela S.V., Valls C., Roncero M.B., Pastor F.I.J., Díaz P., et al. Bacterial cellulose matrices to develop enzymatically active paper // Cellulose. 2020. Vol. 27. Issue 6. P. 3413–3426. https://doi.org/10.1007/s10570-020-03025-9
- Budaeva V.V., Gismatulina Y.A., Mironova G.F., Skiba E.A., Gladysheva E.K., Kashcheyeva E.I., et al. Bacterial nanocellulose nitrates // Nanomaterials. 2019. Vol. 9. Issue 12. 1694. https://doi.org/10.3390/nano9121694
- Shavyrkina N.A., Budaeva V.V., Skiba E.A., Mironova G.F., Bychin N.V., Gismatulina Yu.A., et al. Scale-up of biosynthesis process of bacterial nanocellulose // Polymers. 2021. Vol. 13. Issue 12. P. 1920. https://doi.org/10.3390/polym13121920
- Hallac B.B., Ragauskas A.J. Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol // Biofuels, Bioproducts and Biorefining. 2011. Vol. 5. Issue 2. P. 215–225. https://doi.org/10.1002/bbb.269
- Скиба Е.А., Байбакова О.В., Гладышева Е.К., Будаева В.В. Исследование влияния дозировки инокулята Medusomyces gisevii Sa-12 на выход и степень полимеризации бактериальной целлюло- зы // Известия вузов. Прикладная химия и биотех- нология. 2019. Т. 9 N 3. С 420–429. https://doi.org/10.21285/2227-2925-2019-9-3-420-429
- Marsh A.J., O’Sullivan O., Hill C., Ross R.P., Cotter P.D. Sequence-based analysis of the bacterial and fungal Compositions of multiple kombucha (tea fungus) samples // Food Microbiology. 2014. Vol. 38. P. 171–178. https://doi.org/10.1016/j.fm.2013.09.003
- Chakravorty S., Bhattacharya S., Chatzinotas A., Chakraborty W., Bhattacharya D., Gachhui R. Kombucha tea fermentation: Microbial and biochemical dynamics // International Journal of Food Microbiology. 2016. Vol. 220. P. 63–72. https://doi.org/10.1016/j.ijfoodmicro.2015.12.015
- Kashcheyeva E.I., Gladysheva E.K., Skiba E.A., Budaeva V.V. A study of properties and enzymatic hydrolysis of bacterial cellulose // Cellulose. 2019. Vol. 26. P. 2255–2265. https://doi.org/10.1007/s10570-018-02242-7
- Yin X., Zhang X., Yang J., Lin Q., Wang J., Zhu Q. Comparison of succinylation methods for bacterial cellulose and adsorption capacities of bacterial cellulose derivatives for Cu2+ ion // Polymer Bulletin. 2011. Vol. 67. Issue 3. P. 401–412. https://doi.org/10.1007/s00289-010-0388-5
- Goh W.N., Rosma A., Kaur B., Fazilah A., Karim A.A., Bhat R. Microstructure and physical properties of microbial cellulose produced during fermentation of black tea broth (Kombucha). II. // International Food Research Journal. 2012. Vol. 19. Issue 1. P. 153–158.
- Prescott S.C., Dunn C.G. Industrial Microbiology, 2th ed. New York: McGraw-Hill book co, 1949. 923 p.
Supplementary files
