Возможности использования информационных ресурсов в биоремедиации
- Авторы: Бабынин Э.В.1,2, Дегтярева И.А.1,3
-
Учреждения:
- Казанский (Приволжский) федеральный университет
- Татарский научно-исследовательский институт агрохимии и почвоведения
- Казанский национальный исследовательский технологический университет
- Выпуск: Том 11, № 3 (2021)
- Страницы: 372-383
- Раздел: Физико-химическая биология
- URL: https://bakhtiniada.ru/2227-2925/article/view/301098
- DOI: https://doi.org/10.21285/2227-2925-2021-11-3-372-383
- ID: 301098
Цитировать
Полный текст
Аннотация
Резюме: Биоремедиация с использованием микроорганизмов имеет ряд преимуществ по сравнению с физико-химическими методами очистки вод, грунтов и атмосферы. Микроорганизмы обладают широким спектром метаболических возможностей, благодаря которым они способны преобразовывать, модифицировать и утилизировать токсичные загрязнители для получения энергии и производства биомассы. Показано их участие в разложении различных промышленных отходов, таких как красители, углеводороды, хлорированные ароматические соединения, пестициды и другие. Хотя использование микроорганизмов является экологически чистым и перспективным способом решения экологических угроз, на эффективность биоремедиации влияют многие факторы, такие как химическая природа загрязнителей, их доступность для микроорганизмов, физико-химические характеристики окружающей среды, а также взаимодействие самих организмовдеструкторов друг с другом. Сегодня очень важен поиск новых эффективных штаммов или создание супердеструкторов методами генной и белковой инженерии. Эта задача может быть решена путем привлечения таких «инструментов», как геномика, протеомика, транскриптомика, метаболомика. Эти технологии требуют интеграции огромного количества данных, что невозможно обеспечить без использования биоинформатики. Биоинформатика применяется в микробной биоремедиции разными способами: анализ данных секвенирования генома, идентификация кодирующих белки генов, сравнительный анализ для идентификации функции неизвестных генов, автоматическая реконструкция и сравнение метаболических путей, а также исследование белокбелок и белок–ДНК взаимодействий для понимания регуляторных механизмов. Данный обзор направлен на освещение различных ресурсов, хранящих информацию о возможных путях микробного метаболизма, участвующих в биодеградации нефтепродуктов. Использование подобных информационных ресурсов может стать отправной точкой для многих исследований в биоремедиации.
Ключевые слова
Об авторах
Э. В. Бабынин
Казанский (Приволжский) федеральный университет; Татарский научно-исследовательский институт агрохимии и почвоведения
Email: edward.b67@mail.ru
И. А. Дегтярева
Казанский (Приволжский) федеральный университет; Казанский национальный исследовательский технологический университет
Email: peace-1963@mail.ru
Список литературы
- Ellis L.B.M., Roe D., Wackett L.P. Biodegradation Database: the first decade // Nucleic Acids Research. 2006. Vol. 34. P. D517–D521. https://doi.org/10.1093/nar/gkj076
- Arora P.K., Shi W. Tools of bioinformatics in biodegradation // Reviews in Environmental Science and Biotechnology. 2010. Vol. 9. P. 211–213. https: //doi.org/10.1007/s11157-010-9211-x
- Gao J., Ellis L.B.M., Wackett L.P. The university of Minnesota biocatalysis/biodegradation database: improving public access // Nucleic Acids Research. 2010. Vol. 38. P. D488-D491. https://doi.org/10.1093/nar/gkp771
- Дегтярева И.А., Яппаров И.А., Яппаров А.Х., Ежкова А.М., Давлетшина А.Я., Шайдуллина И.А. Создание и применение биоудобрения на основе эффективного консорциума микроорганизмов-деструкторов углеводородов для рекультивации нефтезагрязненных почв Республики Татарстан // Нефтяное хозяйство. 2017. N 5. С.100–103. https://doi.org/10.24887/0028-2448-2017-5-100-103
- Costa A.S., Romão L.P.C., Araújo B.R., Lucas S.C.O., Maciel S.T.A., Wisniewski A. Jr., et al. Environmental strategies to remove volatile aromatic fractions (BTEX) from petroleum industry wastewater using biomass // Bioresource Technology. 2012. Vol. 105. P. 31–39. https://doi.org/10.1016/j.biortech.2011.11.096
- Chandra S., Sharma R., Singh K., Sharma A. Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon // Annals of Microbiology. 2013. Vol. 63. Issue 2. P. 417–431. https://doi.org/10.1007/s13213-012-0543-3
- Souza E.C., Vessoni-Penna T.C., de Souza Oliveira R.P. Biosurfactant-enhanced hydrocarbon bioremediation: an overview // International Biodeterioration & Biodegradation. 2014. Vol. 89. P. 88–94. https://doi.org/10.1016/j.ibiod.2014.01.007
- Шайдуллина И.А., Яппаров А.Х., Дегтярева И.А., Латыпова В.З., Гадиева Э.Ш. Рекультивация нефтезагрязненных почв на примере выщелоченных черноземов Татарстана // Нефтяное хозяйство. 2015. N 3. С. 102–105.
- Дегтярева И.А., Бабынин Э.В., Мотина Т.Ю., Султанов М.И. Полногеномное секвенирование штамма Staphylococcus warneri, изолированного из загрязненной нефтью почвы // Известия вузов. Прикладная химия и биотехнология, 2020. Т. 10. N 1. С. 48–55.
- Abatenh E., Gizaw B., Tsegaye Z., Wassie M. The role of microorganisms in bioremediation // Open Journal of Environmental Biology. 2017. Vol. 1. Issue 1. P. 038–046. https://doi.org/10.17352/ojeb.000007
- Bhandari S., Poudel D.K., Marahatha R., Dawadi S., Khadayat K., Phuyal S., et al. Microbial enzymes used in bioremediation // Journal of Chemistry. 2021. Vol. 2021. Issue 4. Article ID 8849512. 17 p. https://doi.org/10.1155/2021/8849512
- Abou Seeda M.A., Yassen A.A., Abou El-Nour E.Z.A.A. Microorganism as a tool of bioremediation technology for cleaning waste and industrial water // Bioscience Research. 2017. Vol. 14. Issue 3. P. 633–644.
- Dave S., Das J. Role of microbial enzymes for biodegradation and bioremediation of environmental pollutants: challenges and future prospects. In: Bioremediation for Environmental Sustainability. Saxena G., Kumar V., Shah M.P. (eds.) Elsevier, 2021. P. 325–346. https://doi.org/10.1016/B978-0-12-820524-2.00013-4
- Singh P., Jain R., Srivastava N., Borthakur A., Pal D.B., Singh R., et al. Current and emerging trends in bioremediation of petrochemical waste: a review // Critical Reviews in Environmental Science and Technology. 2017. Vol. 47. Issue 3. P. 155–201. https://doi.org/10.1080/10643389.2017.1318616
- Ghaly A.E., Yusran A., Dave D. Effects of biostimulation and bioaugmentation on the degradation of pyrene in soil // Journal of Bioremediation & Biodegradation. 2013. S7:005. 13 p. https://doi.org/10.4172/2155-6199.S7-005
- Koshlaf E., Ball A.S. Soil bioremediation approaches for petroleum hydrocarbon polluted environments // AIMS Microbiology. 2017. Vol. 3. Issue 1. P. 25–49. https://doi.org/10.3934/microbiol.2017.1.25
- Dvořák P., Nikel P.I., Damborský J., de Lorenzo V. Bioremediation 3.0: engineering pollutant-removing bacteria in the times of systemic biology // Biotechnology Advances. 2017. Vol. 35. Issue 7. P. 845–866. https://doi.org/10.1016/j.biotechadv.2017.08.001
- Chandran H., Meena M., Sharma K. Microbial biodiversity and bioremediation assessment through omics approaches // Frontiers Environmental Chemistry. 2020. Vol. 1. P. 570326. https://doi.org/10.3389/fenvc.2020.570326
- Jesmok E.M., Hopkins J.M., Foran D.R. Next-generation sequencing of the bacterial 16S rRNA gene for forensic soil comparison: a feasibility study // Journal Forensic Sciences. 2016. Vol. 61. Issue 3. P. 607–617. https://doi.org/10.1111/1556-4029.13049
- Rahmeh R., Akbar A., Kumar V., Al-Mansour H., Kishk M., Ahmed N., et al. Insights into bacterial community involved in bioremediation of aged oilcontaminated soil in arid environment // Evolutionary Bioinformatics Online. 2021. Vol. 17. 13 p. https://doi.org/10.1177/11769343211016887
- Misra B.B., Langefeld C.D., Olivier M., Cox L.A. Integrated omics: tools, advances, and future approaches // Journal of Molecular Endocrinology. 2018. Vo. 62. Issue 1. P. R21–R45. https://doi.org/10.1530/JME-18-0055
- Pandey A., Tripathi P.H., Tripathi A.H., Pandey S.C., Gangola S. Omics technology to study bioremediation and respective enzymes. In: Smart bioremediation technologies. Microbial enzymes. Bhatt P. (ed.). New Delhi: Academic Press, 2019. P. 23–43. https://doi.org/10.1016/B978-0-12-818307-6.00002-0
- Singh A.K., Bilal M., Iqbal H.M.N., Raj A. Trends in predictive biodegradation for sustainable mitigation of environmental pollutants: recent progress and future outlook // Science of The Total Environment. 2021. Vol. 770. P. 144561. https://doi.org/10.1016/j.scitotenv.2020.144561
- Goh H.-H. Integrative multi-omics through bioinformatics. // Advances in Experimental Medicine and Biology. 2018. Vol. 1102. P. 69–80. https:// doi.org/10.1007/978-3-319-98758-3_5
- Ejigu G.F., Jung J. Review on the computational genome annotation of sequences obtained by nextgeneration sequencing // Biology. 2020. Vol. 9. Issue 9. P. 295. https://doi.org/10.3390/biology9090295
- Zhang P., Berardini T.Z., Ebert D., Li Q., Mi H., Muruganujan A., et al. PhyloGenes: An online phylogenetics and functional genomics resource for plant gene function inference // Plant Direct. 2020. Vol. 4. Issue 12. P. e00293. https://doi.org/10.1002/pld3.293
- Tong H., Phan N.V.T., Nguyen T.T., Nguyen D.V., Vo N.S., Le L. Review on databases and bioinformatic approaches on pharmacogenomics of adverse drug reactions // Pharmacogenomics and Personalized Medicine. 2021. Vol. 14. P. 61–75. https://doi.org/10.2147/PGPM.S290781
- Caspi R., Altman T., Billington R., Dreher K., Foerster H., Fulcher C.A., et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases // Nucleic Acids Research. 2012. Vol. 42 (Database issue). P. D459–D471. https://doi.org/10.1093/nar/gkt1103
- Mohan C.G., Gandhi T., Garg D., Shinde R. Computer-assisted methods in chemical toxicity prediction // Mini-Reviews in Medicinal Chemistry. 2007. Vol. 7. Issue 5. P. 499–507. https://doi.org/10.2174/138955707780619554
- Chou C.H., Chang W.C., Chiu С.С., Huang С.С., Huang H.D. FMM: a web server for metabolic pathway reconstruction and comparative analysis // Nucleic Acids Research. 2009. Vol. 37. P. W129–W134. https://doi.org/10.1093/nar/gkp264
- Finley S.D., Broadbelt L.J., Hatzimanikatis V. Computational framework for predictive biodegradation // Biotechnology and Bioengineering. 2009. Vol. 104. Issue 6. P. 1086–1097. https://doi.org/10.1002/bit.22489
- Moriya Y., Shigemizu D., Hattori M., Tokimatsu T., Kotera M., Goto S., et al. PathPred: an enzyme-catalyzed metabolic pathway prediction server // Nucleic Acids Research. 2010. Vol. 38. P.W138–W143. https://doi.org/10.1093/nar/gkq318
- Gao J., Ellis L.B.M., Wackett L.P. The University of Minnesota pathway prediction system: multi-level prediction and visualization // Nucleic Acids Research. 2011. Vol. 39. (Web Server issue). P. W406–W411. https://doi.org/10.1093/nar/gkr200
- Kotera M., Goto S. Metabolic pathway reconstruction strategies for central metabolism and natural product biosynthesis // Biophysics & Physicobiology. 2016. Vol. 13. P. 195–205. https://doi.org/10.2142/biophysico.13.0_195
- Shah H.A., Liu J., Yang Z., Feng J. Review of machine learning methods for the prediction and reconstruction of metabolic pathways // Frontiers in Molecular Biosciences. 2021. Vol. 8. P. 634141. https://doi.org/10.3389/fmolb.2021.634141
- Wang L., Dash S., Ng C.Y., Maranas C.D. A review of computational tools for design and reconstruction of metabolic pathways // Synthetic and Systems Biotechnology. 2017. Vol. 2. Issue 4. P. 243–252. https://doi.org/10.1016/j.synbio.2017.11.002
- Wackett L.P. The Metabolic Pathways of Biodegradation. In: The prokaryotes. Applied Bacteriology and Biotechnology. 4th edition. Rosenberg E. (editor-in-chief); DeLong E.F., Lory S., Stackebrandt E., Thompson F. (eds.). Springer, Berlin, Heidelberg. 2013. P. 383–393. https://doi.org/10.1007/978-3-642-31331-8_76
- Dombrowski N., Donaho J.A., Gutierrez T., Seitz K.W., Teske A.P., Baker B.J. Reconstructing metabolic pathways of hydrocarbon-degrading bacteria from the Deepwater Horizon oil spill // Nature Microbiology. 2016. Vol. 1. Issue 7. Article number 16057. https://doi.org/10.1038/nmicrobiol.2016.57
- Jaiswal S., Shukla P. Alternative strategies for microbial remediation of pollutants via synthetic biology // Frontiers in Microbiology. 2020. Vol. 11. P. 808. https://doi.org/10.3389/fmicb.2020.00808
- Henry C.S., DeJongh M., Best A.A., Frybarger P.M., Linsay B., Steven R.L. Highthroughput generation, optimization and analysis of genome-scale metabolic models // Nature Biotechnology. 2010. Vol. 28. P. 977–982. https://doi.org/10.1038/nbt.1672
- Kanehisa M., Furumichi M., Tanabe M., Sato Y., Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs // Nucleic Acids Research. 2017. Vol. 45. Issue D1. P. D353–D361. https://doi.org/10.1093/nar/gkw1092
- Caspi R., Billington R., Ferrer L., Foerster H., Fulcher C.A., Keseler I.M., et al.The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases // Nucleic Acids Research. 2016. Vol. 44. Issue D1. P. D471–D480. https://doi.org/10.1093/nar/gkv1164
- Rentzsch R., Orengo C.A. Protein function prediction – the power of multiplicity // Trends in Biotechnology. 2009. Vol. 27. Issue 4. P. 210–219. https://doi.org/10.1016/j.tibtech.2009.01.002
- Calderón-González K.G., Hernández-Monge J., Herrera-Aguirre M.E., Luna-Arias J.P. Bioinformatics tools for proteomics data interpretation // Advances in Experimental Medicine and Biology. 2016. Vol. 919. P. 3281–341. https://doi.org/10.1007/978-3-319-41448-5_16
- Oliveira J.S., Araújo W., Lopes Sales A.I., de Brito Guerra A., da Silva Araújo S.C., de Vasconcelos A.T.R., et al. BioSurfDB: knowledge and algorithms to support biosurfactants and biodegradation studies. // Database. The Journal of Biology Databases and Curation. 2015. Vol. 2015. bav 033. https://doi.org/10.1093/database/bav033
- Medema M.H., van Raaphorst R., Takano E., Breitling R. Computational tools for the synthetic design of biochemical pathways R // Nature Reviews Microbiology. 2012. Vol. 10. Issue 3. P. 191–202. https://doi.org/10.1038/nrmicro2717
- Hadadi N., Hatzimanikatis V. Design of computational retrobiosynthesis tools for the design of de novo synthetic pathways // Current Opinion in Chemical Biology. 2015. Vol. 28. P. 99–104. https://doi.org/10.1016/j.cbpa.2015.06.025
- Langowski J., Long A. Computer systems for the prediction of xenobiotic metabolism // Advanced Drug Delivery Reviews. 2002. Vol. 54. Issue 3. P. 407–415. https://doi.org/10.1016/s0169-409x(02)00011-x
- Wicker J., Lorsbach T., Gütlein M., Schmid E., Latino D., Kramer S., et al. EnviPath – the environmental contaminant biotransformation pathway resource // Nucleic Acids Research. 2016. Vol. 44. Issue D1. P. D502–D508. https://doi.org/10.1093/nar/gkv1229
- Pazos F., Guijas D., Valencia A., de Lorenzo V. MetaRouter: bioinformatics for bioremediation // Nucleic Acids Research. 2005. Vol. 33. P. D588–D592. https://doi.org/10.1093/nar/gki068
Дополнительные файлы


