Formation of humic substances in the reaction of D-glucose with p-toluidine in anhydrous ethanol
- Authors: Cherepanov I.S.1, Kryukova P.S.1
-
Affiliations:
- Udmurt State University
- Issue: Vol 10, No 2 (2020)
- Pages: 188-195
- Section: Chemical Sciences
- URL: https://bakhtiniada.ru/2227-2925/article/view/299673
- DOI: https://doi.org/10.21285/2227-2925-2020-10-2-188-195
- ID: 299673
Cite item
Full Text
Abstract
The aim of the study was to investigate the processes of formation and structural group composition of the products formed during the reaction of D-glucose with p-toluidine in anhydrous ethanol using electronic and vibrational spectroscopy methods. The evolution of the profiles of the electronic spectra of working solutions shows the formation of a chromophore system: clear peaks at 380 and 440 nm are already present at a reaction time of 60 min. The appearance of an additional maximum at 520 nm (90, 120 min) likely corresponds to the formation of chromophores in condensed structures, as confirmed by a decrease in the values of the E4/Е6 indices over time. The dynamics of the transformation of structural elements is also clearly seen in the analysis of IR spectra: as the reactions proceed, the CH aliphatic component of the structure decreases, while the aromatisation and functionalisation of products by chromophore groups increases. For products obtained between 90 and 120 min, a clear band at 1656 cm-1, attributed to stretching vibrations of multiple bonds in conjugated C=C–C=O systems and azomethine fragments, indicates the of condensation reactions. In the spectra of insoluble solid products fractionated by water, the intensity of the bands at 1656 and 1190 cm-1 is significantly reduced; this is possibly due to the transfer of some of the coloured low molecular weight products to the aqueous phase. A comparison of the IR Fourier transform spectra of the final solid products with the spectra of natural and synthetic humic-like substances indicates their similar structural group composition. The intensity of the bands at 1620, 1508 and 815 cm-1 indicates a significant contribution of the aromatic component to the structure of the products of water-insoluble fractions; the water-soluble fractions mainly include aliphatic oxygen-containing structures resulting from the oxidative destruction of the initial carbohydrate. The synthesised products seem promising as convenient plant growth regulators with controlled release of the active substance.
Keywords
About the authors
I. S. Cherepanov
Udmurt State University
Author for correspondence.
Email: cherchem@mail.ru
P. S. Kryukova
Udmurt State University
Email: cherchem@mail.ru
References
- Goh K.M., Stevenson F.J. Comparison of infrared spectra of synthetic and natural humic and fulvic acids // Soil Scince. 1971. Vol. 112. Issue 6. P. 392–400.
- Stevenson F.J., Goh K.M. Infrared spectra of humic acids and related substances // Geochimica et Cosmochimica Acta. 1971. Vol. 35. Issue 5. P. 471–483. https://doi.org/10.1016/0016-7037(71)90044-5
- Sumerskii I.V., Krutov S.M., Zarubin M.Ya. Human-like substances formed under conditions of industrial hydrolysis of wood // Russian Journal of Applied Chemistry. 2010. Vol. 83. Issue 2. P. 320–327. https://doi.org/10.1134/S1070427210020266
- Litvin V.A., Galagan R.L., Minaev B.F. Synthesis and properties of synthetic analogs of natural humic acids // Russian Journal of Applied Chemistry. 2012. Vol. 85. Issue 2. P. 296–302. https://doi.org/10.1134/S1070427212020243
- Koroleva O.V., Kulikova N.A., Alekseeva T.N., Stepanova E.V., Davidchik V.N., Belyatva E.Yu., et al. A comparative characterization of fungal melanin and humic-like substances synthesized by Cerrena maxima 0275 // Applied Biochemistry and Microbiology. 2007. Vol. 43. Issue 1. P. 61–67.
- Liang L., Zhou M., Li K., Jiang L. Facile and fast polyaniline-directed synthesis of monolithic carbon cryogels from glucose // Microporous and Mesoporous Materials. 2018. Vol. 265. Issue 1. P. 26–34. https://doi.org/10.1016/J.micromeso.2013.01.035
- Bai C., Shen F., Qi X.-H. Preparation of porous carbon directly from hydrothermal carbonization of fructose and phloroglucinol for adsorption of tetracycline // Chinese Chemical Letters. 2017. Vol. 28. Issue 5. P. 960–962. https://doi.org/10.1016/j.cclet.2016.12.026
- Shul’tsev A.L. N-glycosides of 4-aminostyrene // Russian Journal of General Chemistry. 2014. Vol. 84. N 2. P. 235–241. https://doi.org/10.1134/S1070363214020133
- Черепанов И.С. Оценка параметров ароматичности продуктов карбонизации в системах углевод–ариламин // Известия высших учебных заведений. Северо-Кавказский регион. Технические науки. 2018. N 4 (200). С. 118–123. https://doi.org/10.17213/0321-2653-2018-4-118-123
- Gressel N., McGrath A.E., McColl J.G., Powers R.F. Spectroscopy of aqueous extracts of forest litter. I. Suitability of methods // Soil Science Society of Arnerica Journal. 1995. Vol. 59. Issue 6. P. 1715–1723. https://doi.org/10.2136/sssaj1995.03615995005900060030x
- Van Zandvoort I., Koers E., Wiengarth M., Bruijnincx P., Baldus M., Weckhuysen B. Structural characterization of 13C-enriched humins and alkali–treated 13C-humins by 2D solid–state NMR // Green Chemistry. 2015. Vol. 17. Issue 8. P. 4383–4392. https://doi.org/10.1039/C5GC00327J
- Жеребцов С.И., Малышенко Н.В., Вотолин К.С., Андроханов В.А., Соколов Д.А., Дугаржав Ж.. Гуминовые препараты: связь структурно-группового состава и биологической активности // Вестник Кузбасского государственного технического университета. 2018. N 5 (129). С. 52–60. https://doi.org/10.26730/1999-4125-2018-5-52-60
- Tsilomelekis G., Orella M., Lin Z., Cheng Z., Zheng W., Nikolakis V., et al. Molecular structure, morphology and growth mechanism and rates of 5-hydroxymethylfurfural (HMF) derived humins // Green Chemistry. 2016. Vol. 18.Issue 7. P. 1983–1993. https://doi.org/10.1039/c5gc01938a
- Yaylayan V., Kaminsky E. Isolation and structural analysis of Maillad polymers: caramel and melanoidin formation in glycine/glucose model system // Food Chemistry. 1998. Vol. 63. Issue 1. P. 25–31.
- Yang Y.-H., Sheng F.-L., Tao Z.-Y. Transmission FT-IR difference spectroscopic characterization of a fulvic acid from weathered coal in water // Toxicological and Environmental Chemistry. 1995. Vol. 51. Issue 1-4. P. 135–144. https://doi.org/10.1080/02772249509358231
- Jung A.-V., Frochot C., Parant S., Lartiges B.S., Selve C., Viriot M.-L., et al. Synthesis of amino-phenolic humic-like substances and comparison with natural aquatic humic acids: a multi-analytical techniques approach // Organic Geochemistry. 2005. Vol. 36. Issue 9. P. 1252–1271. https://doi.org/10.1016/j.orggeochem.2005.04.004
- Patil S.K.R., Lund C.R.F. Formation and growth of humins via aldol addition and condensation during acid-catalyzed conversion of 5-hydroxymethylfurfural // Energy and Fuels. 2011. Vol. 25. Issue 10. P. 4745–4755. https://doi.org/10.1021/ef2010157
- Пат. № 2101227, Российская Федерация. Ароматические основания Шиффа в качестве регулятора роста растений / В.П. Тимофеев, Ф.А. Селимов, У.М. Джемилев; патентообладатель Стерлитамакский нефтехимический завод; заявл. 04.08.1995, опубл. 10.01.1998.
- Palande S.V., Swamy D.K. Synthesis, characterization and biological activity of Schiff base 2{-methyl}-phenol and its transition metal complexes // International Research Journal of Science and Engineering. 2018. Special Issue A2. P. 35–40.
- Атабаева А.М., Джеджея В.Т., Лусс А.Л., Устинова М.С., Штильман М.И. Полимерные формы регуляторов роста растений // Успехи в химии и химической технологии. 2019. Т. 33. N 2. С. 18–19.
Supplementary files
