Система сахаропосредованной регуляции и роль киназ HXK1, SnRK1, TOR у Arabidopsis thaliana
- Авторы: Бельков В.И.1, Гарник Е.Ю.1, Тарасенко В.И.1, Константинов Ю.М.2
-
Учреждения:
- Сибирский институт физиологии и биохимии растений, СО РАН
- Иркутский государственный университет
- Выпуск: Том 10, № 4 (2020)
- Страницы: 627-638
- Раздел: Физико-химическая биология
- URL: https://bakhtiniada.ru/2227-2925/article/view/299586
- DOI: https://doi.org/10.21285/2227-2925-2020-10-4-627-638
- ID: 299586
Цитировать
Полный текст
Аннотация
Об авторах
В. И. Бельков
Сибирский институт физиологии и биохимии растений, СО РАН
Email: anvad.irk@rambler.ru
Е. Ю. Гарник
Сибирский институт физиологии и биохимии растений, СО РАН
Email: elga74@yandex.ru
В. И. Тарасенко
Сибирский институт физиологии и биохимии растений, СО РАН
Email: vslav@inbox.ru
Ю. М. Константинов
Иркутский государственный университет
Email: yukon@sifibr.irk.ru
Список литературы
- Smeekens S., Ma J., Hanson J., Rolland F. Sugar signals and molecular networks controlling plant growth // Current Opinion in Plant Biology. 2010. Vol. 13. Issue 3. P. 274-279. https://doi.org/10.1016/j.pbi.2009.12.002
- Matsoukas I.G. Interplay between sugar and hormone signaling pathways modulate floral signal transduction // Frontiers in Genetics. 2014. Vol. 5. P. 218. https://doi.org/10.3389/fgene.2014.00218
- Moore B., Zhou L., Rolland F., Hall Q., Cheng W.-H., Liu Y.-X., et al. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling // Science. 2003. Vol. 300. Issue 5617. P. 332-336. https://doi.org/10.1126/science.1080585
- Rolland F., Baena-Gonzalez E., Sheen J. Sugar sensing and signaling in plants: conserved and novel mechanisms // Annual Review of Plant Biology. 2006. Vol. 57. P. 675-709. https://doi.org/10.1146/annurev.arplant.57.032905.105441
- Van Dijken A.J., Schluepmann H., Smeekens S.C. Arabidopsis trehalose-6-phosphate synthase 1 is essential for normal vegetative growth and transition to flowering // Plant Physiology. 2004. Vol. 135. Issue 2. P. 969-977. https://doi.org/10.1104/pp.104.039743
- Baena-Gonzalez E., Rolland F., Thevelein J.M., Sheen J. A central integrator of transcription networks in plant stress and energy signaling // Nature. 2007. Vol. 448. Issue 7156. P. 938-942. https://doi.org/10.1038/nature06069
- Schluepmann H., van Dijken A., Aghdasi M., Wobbes B., Paul M., Smeekens S. Trehalose mediated growth inhibition of Arabidopsis seedlings is due to trehalose-6-phosphate accumulation // Plant Physiology. 2004. Vol. 135. Issue 2. P. 879-890. https://doi.org/10.1104/pp.104.039503
- Hausler R.E., Heinrichs L., Schmitz J., Flugge U.-I. How sugars might coordinate chloroplast and nuclear gene expression during acclimation to high light intensities // Molecular Plant. 2014. Vol. 7. Issue 7. P. 1121-1137. https://doi.org/10.1093/mp/ssu064
- Ramon M., Rolland F., Sheen J. Sugar sensing and signaling // The Arabidopsis Book. 2008. Vol. 6. P. e0117. https://doi.org/10.1199/tab.0117
- Biasing O.E., Gibon Y., Gunther M., Hohne M., Morcuende R., Osuna D., et al. Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Ara-bidopsis // The Plant Cell. 2005. Vol. 17. Issue 12. P. 3257-3281. https://doi.org/10.1105/tpc.105.035261
- Sami F., Siddiqui H., Hayat S. Interaction of glucose and phytochormone signaling in plants // Plant Physiology and Biochemistry. 2019. Vol. 135. P. 119-126. https://doi.org/10.1016/j.plaphy.2018.11.005
- Xiong Y., McCormack M., Li L., Hall Q., Xiang C., Sheen J. Glc-TOR signaling leads transcriptome reprogramming and meristem activation // Nature. 2013. Vol. 496. Issue 7444. P. 181-186. https://doi.org/10.1038/nature12030
- Aguilera-Alvarado G.P., Sanchez-Nieto S. Plant hexokinases are multifaceted proteins // Plant and Cell Physiology. 2017. Vol. 58. Issue 7. P. 11511160. https://doi.org/10.1093/pcp/pcx062
- Cho J.-I., Ryoo N., Eom J.S., Lee D.-W., Kim H.-B., Jeong S.-W., et al. Role of the rice hexokina-ses OsHXK5 and OsHXK6 as glucose sensors // Plant Physiology. 2009. Vol. 149. P. 745-759. https://doi.org/10.1104/pp.108.131227
- Zhang C., Han L., Slewinski T.L., Sun J., Zhang J., Wang Z.-Y., et al. Symplastic phloem loading in poplar // Plant Physiology. 2014. Vol. 166. Issue 1. P. 306-313. https://doi.org/10.1104/pp.114.245845
- Sheen J. Metabolic repression of transcription in higher plants // The Plant Cell. 1990. Vol. 2. P. 1027-1038. https://doi.org/10.1105/tpc.2.10.1027
- Cho Y.-H., Yoo S.-D., Sheen J. Glucose signaling through nuclear hexokinase1 complex in Ara-bidopsis // Plant Signaling and Behavior. 2007. Vol. 2. Issue 2. P. 123-124. https://doi.org/10.1016/j.cell.2006.09.028
- Rottmann T., Fritz C., Sauer N., Stadler R. Glucose uptake via STP transporters inhibits in vitro pollen tube growth in a HEXOKINASE1-dependent manner in Arabidopsis thaliana // The Plant Gell. 2018. Vol. 30. Issue 9. P. 2057-2081. https://doi.org/10.1105/tpc.18.00356
- Kim J. Sugar metabolism as input signals and fuel for leaf senescence // Genes and Genomics. 2019. Vol. 41. Issue 7. P. 737-746. https://doi.org/10.1007/s13258-019-00804-y
- Miao H., Cai C., Wei J., Chang J., Qian H., Zhang X., et al. Glucose enhances indolic glucosin-olate biosynthesis without reducing primary sulfur assimilation // Scientific Reports. 2016. Vol. 6. Article no. 31854. https://doi.org/10.1038/srep31854
- Huang W., Yu C., Hu J., Wang L., Dan Z., Zhou W., et al. Pentatricopeptide-repeat family protein RF6 functions with hexokinase 6 to rescue rice cytoplasmic male sterility // Proceedings of the National Academy of Sciences of the United States of America. 2015. Vol. 112. P. 14984-14989. https://doi.org/10.1073/pnas.1511748112
- Rook F., Handingham S.A., Li Y., Bevan M.W. Sugar and ABA response pathways and the control of gene expression // Plant Cell & Environment. 2006. Vol. 29. Issue 3. P. 426-434. https://doi.org/10.1111/j.1365-3040.2005.01477.x
- Arenas-Huertero F., Arroyo A., Zhou L., Sheen J., Leon P. Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar // Genes and Development. 2000. Vol. 14. Issue 16. P. 2085-2096.
- Koussevitzky S., Nott A., Mockler T.C., Hong F., Sachetto-Martins G., Surpin M., et al. Signals from chloroplasts converge to regulate nuclear gene expression // Science. 2007. Vol. 316. Issue 5825. P. 715-719. https://doi.org/10.1126/science.1140516
- Gregorio J., Hernandez-Bernal A.F., Cordoba E., Leon P. Characterization of evolutionarily conserved motifs involved in activity and regulation of the ABA-INSENSITIVE (ABI) 4 transcription factor // Molecular Plant. 2014. Vol. 7. Issue 2. P. 422-436. https://doi.org/10.1093/mp/sst132
- Giraud E., van Aken O., Ho L.H.M., Whelan J. The transcription factor ABI4 is a regulator of mitochondrial retrograde expression of ALTERNATIVE OXIDASE1a // Plant Physiology. 2009. Vol. 150. Issue 3. P. 1286-1296. https://doi.org/10.1104/pp.109. 139782
- Leon P., Gregorio J., Cordoba E. ABI4 and its role in chloroplast retrograde communication // Frontiers in Plant Science. 2013. Vol. 3. Article 304. 13 p. https://doi.org/10.3389/fpls.2012.00304
- Tsai A.Y.-L., Gazzarrini S. Trehalose-6-phosphate and SnRK1 kinases in plant development and signaling: the emerging picture // Frontiers in Plant Science. 2014. Vol. 5. Article 119. 11 p. https://doi.org/10.3389/fpls.2014.00119
- Swartzberg D., Hanael R., Granot D. Rela tionship between hexokinase and cytokinin in the regulation of leaf senescence and seed germination // Plant Biology. 2011. Vol. 13. Issue 3. P. 439-444. https://doi.org/10.1111/j.1438-8677.2010.00376.x
- Li L., Sheen J. Dynamic and diverse sugar signaling // Current Opinion in Plant Biology. 2016. Vol. 33. P. 116-125. https://doi.org/10.1016/j.pbi. 2016.06.018
- Crozet P., Margalha L., Confraria A., Rodrigues A., Martinho C., Adamo M., et al. Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases // Frontiers in Plant Science. 2014. Vol. 5. P. 190. https://doi.org/10.3389/fpls.2014.00190
- Glab N., Qury C., Guerinier T., Domenichini S., Crozet P., Thomas M., et al. The impact of Ara-bidopsis thaliana SNF1-related-kinase 1 (SnRK1)-activating kinase 1 (SnAK1) and SnAK2 on SnRK1 phosphorylation status: characterization of a SnAK double mutant // The Plant Journal. 2017. Vol. 89. Issue 5. P. 1031-1041. https://doi.org/10.1111/tpj.13445
- Blanco N.E., Liebsch D., Diaz M.G., Strand A., Whelan J. Dual and dynamic intracellular localization of Arabidopsis thaliana SnRK1.1 // Journal of Experimental Botany. 2019. Vol. 70. Issue 8. P. 2325-2338. https://doi.org/10.1093/jxb/erz023
- Van Dingenen J., Vermeersch M., de Milde L., Hulsmans S., de Winne N., van Leene J., et al. The role of HEXOKINASE1 in Arabidopsis leaf growth // Plant Molecular Biology. 2019. Vol. 99. Issue 1-2. P. 79-93. https://doi.org/10.1007/s11103-018-0803-0
- O’Hara L.E., Paul M.J., Wingler A. How do sugars regulate plant growth and development? New insight into the role of trehalose-6-phosphate // Molecular Plant. 2013. Vol. 6. Issue 2. P. 261-274. https://doi.org/10.1093/mp/sss120
- Dong P., Xiong F., Que Y., Wang K., Yu L., Li Z., et al. Expression profiling and functional analysis reveals that TOR is a key player in regulating photosynthesis and phytohormone signaling pathways in Arabidopsis // Frontiers in Plant Science. 2015. Vol. 6. Article 667. 15 p. https://doi.org/10.3389/fpls.2015.00677
- Dobrenel T., Caldana C., Hanson J., Robaglia C., Vincentz M., Viet B., et al. TOR signaling and nutrient sensing // Annual Review of Plant Biology. 2016. Vol. 67. P. 261-285. https://doi.org/10.1146/annurev-arplant-043014-114648
- Cao P., Kim S.-J., Xing A., Schenck C.A., Liu L., Jiang N., et al. Homeostasis of branched-chain amino acids is critical for the activity of TOR signaling in Arabidopsis // eLife. 2019. Vol. 8. P. e50747. https://doi.org/10.7554/eLife.50747
- Shinkawa H., Kajikawa M., Nomura Y., Ogura M., Sawaragi Y., Yamano T., et al. Algal protein kinase, triacylglycerol accumulation regulator1, modulates cell viability and gametogenesis in car-bon/nitrogen imbalanced conditions // Plant Cell Physiology. 2019. Vol. 60. Issue 4. P. 916-930. https://doi.org/10.1093/pcp/pcz010
- Paul M.J., Jhurreea D., Zhang Y., Primave-si L.F., Delatte T., Schluepmann H., et al. Upregulation of biosynthetic processes associated with growth by trehalose 6-phosphate // Plant Signaling & Behavior. 2010. Vol. 5. Issue 4. P. 386-392. https://doi.org/10.4161/psb.5.4.10792
- Delatte T.L., Sedijani P., Kondou Y., Matsui M., de Jon G.J., Somsen G.W., et al. Growth arrest by trehalose-6-phosphate: an astonishing case of primary metabolite control over growth by way of the SnRK1 signaling pathway // Plant Physiology. 2011. Vol. 157. Issue 1. P. 160-174. https://doi.org/10.1104/pp.111.180422
- Yadav U.P., Ivakov A., Feil R., Duan G.Y., Walther D., Giavalisco P., et al. The sucrosetrehalose 6-phosphate (Tre6P) nexus: specificity and mechanisms of sucrose signalling by Tre6P // Journal of Experimental Botany. 2014. Vol. 65. Issue 4. P. 1051-1068. https://doi.org/10.1093/jxb/ert457
- Cho Y.-H., Hong J.-W., Kim E.-C., Yoo S.-D. Regulatory functions of SnRK1 in stress-responsive gene expression and in plant growth and development // Plant Physiology. 2012. Vol. 158. Issue 4. P. 1955-1964. https://doi.org/10.1104/pp.111.189829
- Moreau M., Azzopardi M., Clement G., Dobrenel T., Marchive C., Renne C., et al. Mutations in the Arabidopsis homolog of LST8/GeL, a partner of the target of rapamycin kinase, impair plant growth, flowering, and metabolic adaptation to long days // The Plant Cell. 2012. Vol. 24. Issue 2. P. 463-481. https://doi.org/10.1105/tpc.111.091306
- Xiong Y., McCormack M., Li L., Hall Q., Xiang C., Sheen J. Glucose-TOR signalling reprograms the transcriptome and activates meristems // Nature. 2013. Vol. 496. Issue7444. P. 181-186. https://doi.org/10.1038/nature12030
- Baena-Gonzalez E., Rolland F., Thevelein J.M., Sheen J. A central integrator of transcription networks in plant stress and energy signaling // Nature. 2007. Vol. 448. Issue 7156. P. 938-942. https://doi.org/10.1038/nature06069
- Karve A., Xia X., Moore B. Arabidopsis Hexokinase-Like1 and Hexokinase1 form a critical node in mediating plant glucose and ethylene responses // Plant Physiology. 2012. Vol. 158. P. 1965-1975. https://doi.org/10.1104/pp.112.195636
- Kelly G., David-Schwartz R., Sade N., Moshelion M., Levi A., Alchanatis V., et al. The Pitfalls of Transgenic Selection and New Roles of AtHXK1: A high level of AtHXK1 expression uncouples hexokinase1-dependent sugar signaling from exogenous sugar // Plant Physiology. 2012. Vol. 159. Issue 1. P. 47-51. https://doi.org/10.1104/pp.112.196105
- Wingler A., Delatte T.L., O’Hara L.E., Primavesi L.F., Jhurreea D., Paul M.J., et al. Trehalose 6-phosphate is required for the onset of leaf senescence associated with high carbon availability // Plant Physiology. 2012. Vol. 158. P. 1241-1251. https: //doi.org/10.1104/pp.111.191908
- Salem M.A., Li Y., Wiszniewski A., Giavalisco P. Regulatory-associated protein of TOR (RAPTOR) alters the hormonal and metabolic composition of Arabidopsis seeds, controlling seed morphology, viability and germination potential // The Plant Journal. 2017. Vol. 92. Issue 4. P. 525-545. https://doi.org/10.1111/tpj.13667
Дополнительные файлы
