The effect of water vapor on the conductivity and response of gas-sensitive nanostructured ZnO layers to ethanol vapors at room temperature

Capa

Citar

Texto integral

Resumo

The paper presents the results of a study on the sensitivity of gas-sensing zinc oxide ZnO film nanostructures at room temperature. The aim of the research was to investigate the effect of ambient humidity on the conductivity of ZnO samples and their response to ethanol vapor in the presence of water vapor. It has been discovered that zinc oxide films are responsive to both water and ethanol vapor at room temperature, across a broad range of concentrations (5% to 50% saturated vapor). The study found that repeated exposure to water vapor can lead to changes in the conductivity of zinc oxide samples when they are exposed to dry air. Additionally, pre-annealing the samples at 400°C can help to replicate the concentration-dependent response of gas-sensitive structures to water vapor. Hysteresis was observed in the relationship between concentration and response to water vapor, in the range of 5% to 90% of the relative humidity. This can be explained by the capillary condensation of water vapor within the mesopores of zinc oxide layers. As the humidity of a gas sample containing ethanol increased, the response values and detection limit for ethanol decreased in the gas-air mixture for ZnO samples. Statistical analysis using the principal component method showed the potential for classifying dry and humid gas samples with ethanol vapor in air. Data processing was used to eliminate the influence of the background humidity on the calibration curve for gas-sensitive ZnO samples, demonstrating the effectiveness of this method.

Sobre autores

Nikita Klychkov

Saratov State University

Email: nklychkov@mail.ru
3rd year postgraduate student, Physics Institute

Viacheslav Simakov

Saratov State University

Dr. Sc., Professor, Material Sciences, Technologies and Quality Management Department

Ilya Sinev

Saratov State University

Ph. D., Docent, Material Sciences, Technologies and Quality Management Department

Vera Efanova

Volga State Transport University

Dr. Sc., Professor

Andrey Zakharevich

Saratov State University

Ph. D., Head of the Laboratory for Diagnostics of Nanomaterials and Structures

Bibliografia

  1. Simakov, V.V. Variation of the conductivity of a thin film of tin dioxide in response to stepwise gas sampling / V.V. Simakov, O.V. Yakusheva, A.S. Voroshilov et al. // Technical Physics Letters. - 2006. - V. 32. - I. 8. - P. 725-728. doi: 10.1134/S1063785006080256.
  2. Zhu, L. Room-temperature gas sensing of ZnO-based gas sensor: a review / L. Zhu, W. Zeng // Sensors and Actuators A: Physical. - 2017. - V. 267. - P. 242-261. doi: 10.1016/j.sna.2017.10.021.
  3. Wang, Y. Controllable synthesis of ZnO nanoflowers and their morphology-dependent photocatalytic activities / Y. Wang, X. Li, N. Wang, et al. // Separation and Purification Technology. - 2008. - V. 62. - I. 3. - P. 727-732. doi: 10.1016/j.seppur.2008.03.035.
  4. Gupta, S.K. Development of gas sensors using ZnO nanostructures / S.K. Gupta, A. Joshi, M. Kaur // Journal of Chemical Sciences. - 2010. - V. 122. - P. 57-62. doi: 10.1007/s12039-010-0006-y.
  5. Fan, S.W. Nanopatterned polycrystalline ZnO for room temperature gas sensing / S.W. Fan, A.K. Srivastava, V.P. Dravid // Sensors and Actuators B: Chemical. - 2010. - V. 144. - I. 1. - P. 159-163. doi: 10.1016/j.snb.2009.10.054.
  6. Синёв, И.В. Влияние освещения на распознавательную способность мультисенсорных микросистем на основе нитевидных нанокристаллов диоксида олова / И.В. Синёв, Н.А. Клычков, Д.А. Тимошенко, В.В. Симаков // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2020. - Вып. 12. - С. 713-721. doi: 10.26456/pcascnn/2020.12.713.
  7. Kirkwood, N. Enhancing quantum dot LED efficiency by tuning electron mobility in the ZnO electron transport layer / N. Kirkwood, B. Singh, P. Mulvaney // Advanced Materials Interfaces. - 2016. - V. 3. - I. 22. - Art. №. 1600868. - 7 p. doi: 10.1002/admi.201600868.
  8. Hofmann, D.M. Properties of the oxygen vacancy in ZnO / D.M. Hoffman, D. Pfisterer, J. Sann et al. // Applied Physics A. - 2007. - V. 88. - P. 147-151. doi: 10.1007/s00339-007-3956-2.
  9. Liu, L. Oxygen vacancies: The origin of n-type conductivity in ZnO / L. Liu, Z. Mei, A. Tang // Physical Review B. - 2016. - V. 93. - I. 23. - P. 235305-1-235305-6. doi: 10.1103/PhysRevB.93.235305.
  10. Клычков, Н.А. Математическое моделирование проводимости поликристаллических слоёв широкозонных полупроводников при адсорбции на их поверхности газов - восстановителей в присутствии кислорода / Н.А. Клычков, Д.В. Курмашева, В.В. Симаков, И.В. Синев // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2023. - Вып. 15. - С. 424-431. doi: 10.26456/pcascnn/2023.15.424.
  11. Simakov, V. Gas identification by quantitative analysis of conductivity-vs-concentration dependence for SnO2 sensors / V. Simakov, A. Voroshilov, A. Grebennikov, N. Kucherenko, O. Yakusheva, V. Kisin, // Sensors and Actuators B: Chemical. - 2009. - V. 137. - I. 2. - P. 456-461. doi: 10.1016/j.snb.2009.01.005.
  12. Симаков, В.В. Влияние паров воды и освещения на проводимость тонких пленок диоксида олова при комнатной температуре / В.В. Симаков, И.В. Синев, А.В. Смирнов и др. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2017. - Вып. 9. - С. 449-454. doi: 10.26456/pcascnn/2017.9.449.
  13. Wang, C. Metal oxide gas sensors: sensitivity and influencing factors / C. Wang, L. Yin, L. Zhang et al. // Sensors. - 2010. - V. 10. - I. 3. - P. 2088-2106. doi: 10.3390/s100302088.
  14. Lee, J. Precise control of surface oxygen vacancies in ZnO nanoparticles for extremely high acetone sensing response /j. Lee, Y. Choi, B.J. Park et al. // Journal of Advanced Ceramics. - 2022. - V. 11. - I. 5. - P. 769-783. doi: 10.1007/s40145-022-0570-x.
  15. Fang, Z.B. Influence of post-annealing treatment on the structure properties of ZnO films / Z.B. Fang, Z.J. Yan, Y.S. Tan et al. // Applied surface science. - 2005. - V. 241. - I. 3-4. - P. 303-308. doi: 10.1016/j.apsusc.2004.07.056.
  16. Gurylev, V. Defect engineering of ZnO: Review on oxygen and zinc vacancies / V. Gurylev, T.P. Perng // Journal of the European Ceramic Society. - 2021. - V. 41. - I. 10. - P. 4977-4996. doi: 10.1016/j.jeurceramsoc.2021.03.031.
  17. Bai, Z. Effect of humidity on the gas sensing property of the tetrapod-shaped ZnO nanopowder sensor / Z. Bai, C. Xie, M. Hu et al. // Materials Science and Engineering: B. - 2008. - V. 149. - I. 1. - P. 12-17. doi: 10.1016/j.mseb.2007.11.020.
  18. Raymand, D. Water adsorption on stepped ZnO surfaces from MD simulation / D. Raymand, A.C.T. van Duin, D. Spångberg et al. // Surface Science. - 2010. - V. 604. - I. 9-10. - P. 741-752. doi: 10.1016/j.susc.2009.12.012.
  19. Calzolari, A. Water adsorption on nonpolar ZnO (10 0) surface: a microscopic understanding / A. Calzolari, A. Catellani // The Journal of Physical Chemistry C. - 2009. - V. 113. - I. 7. - P. 2896-2902. doi: 10.1021/jp808704d.
  20. Dulub, O. Observation of the dynamical change in a water monolayer adsorbed on a ZnO surface / O. Dulub, B. Meyer, U. Diebold // Physical Review Letter. - 2005. - V. 95. - I. 13. - P. 136101-1-136101-4. doi: 10.1103/PhysRevLett.95.136101.
  21. Yu, S. Effects of pH on high-performance ZnO resistive humidity sensors using one-step synthesis / S. Yu, H. Zhang, J. Zhang, Z. Li // Sensors. - 2019. - V. 19. - I. 23. - Art. №. 5267. - 11 p. doi: 10.3390/s19235267.
  22. Korotcenkov, G. Kinetics of gas response to reducing gases of SnO2 films, deposited by spray pyrolysis / G. Korotcenkov, V. Brinzari, V. Golovanov, Y. Blinov // Sensors and Actuators B: Chemical. - 2004. - V. 98. - I. 1. - P. 41-45. doi: 10.1016/j.snb.2003.08.022.
  23. Erol, A. Humidity sensing properties of ZnO nanoparticles synthesized by sol-gel process / A. Erol, S. Okur, B.Comba et al. // Sensors and Actuators B: Chemical. - 2010. - V. 145. - I. 1. - P. 174-180. doi: 10.1016/j.snb.2009.11.051.
  24. Клычков, Н.А. Динамика отклика сенсора на основе наноструктурированного слоя диоксида олова при воздействии паров изопропанола / Н.А. Клычков, В.В. Симаков, И.В. Синев, Д.А. Тимошенко // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2021. - Вып. 13. - С. 708-716. doi: 10.26456/pcascnn/2021.13.708.
  25. Kwak, G. Adsorption and reaction of ethanol on ZnO nanowires / G. Kwak, K. Yong // The Journal of Physical Chemistry C. - 2008. - V. 112. - I. 8. - P. 3036-3041. doi: 10.1021/jp7103819.
  26. Meyer, B. Water adsorption on ZnO ( ): from single molecules to partially dissociated monolayers / B. Meyer, H. Rabaa, D. Marx // Physical Chemistry Chemical Physics. - 2006. - V. 8. - I. 13. - P. 1513-1520. doi: 10.1039/b515604a.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».