X-ray diffraction studies of the growth process of thin films of high-entropy TiNbZrTaHfCu alloy in situ using synchrotron radiation
- 作者: Ivanov Y.F.1, Akhmadeev Y.K.1, Klopotov A.A.2, Prokopenko N.A.1, Petrikova E.A.1, Krysina O.V.1, Shugurov V.V.1, Shmakov A.N.1,3, Lavrov V.Y.2
-
隶属关系:
- Institute of High Current Electronics SB RAS
- Tomsk State University of Architecture and Building
- Boreskov Institute of Catalysis SB RAS
- 期: 编号 16 (2024)
- 页面: 140-153
- 栏目: Experimental studies of nanoparticles, nanosystems and nanomaterials
- URL: https://bakhtiniada.ru/2226-4442/article/view/319421
- DOI: https://doi.org/10.26456/pcascnn/2024.16.140
- EDN: https://elibrary.ru/DTHLJS
- ID: 319421
如何引用文章
全文:
详细
作者简介
Yuri Ivanov
Institute of High Current Electronics SB RAS
Email: yufi55@mail.ru
Dr. Sc., Chief Researcher, Laboratory of Plasma Emission Electronics
Yuri Akhmadeev
Institute of High Current Electronics SB RASPh. D., Head of the Laboratory of Plasma Emission Electronics
Anatoly Klopotov
Tomsk State University of Architecture and BuildingDr. Sc., Professor, Department of Applied Mechanics and Materials Science
Nikita Prokopenko
Institute of High Current Electronics SB RASJunior Researcher, Laboratory of Plasma Emission Electronics
Elizaveta Petrikova
Institute of High Current Electronics SB RASJunior Researcher, Laboratory of Plasma Emission Electronics
Olga Krysina
Institute of High Current Electronics SB RASPh. D., Researcher, Laboratory of Plasma Emission Electronics
Vladimir Shugurov
Institute of High Current Electronics SB RASResearcher, Laboratory of Plasma Emission Electronics
Alexander Shmakov
Institute of High Current Electronics SB RAS; Boreskov Institute of Catalysis SB RASDr. Sc., Chief Researcher, Boreskov Institute of Catalysis of the Siberian Branch of the RAS
V. Lavrov
Tomsk State University of Architecture and Building2nd year graduate student, Department of Applied Mechanics and Materials Science
参考
- Cantor, B. Microstructural development in equiatomic multicomponent alloys / B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent // Materials Science and Engineering: A. - 2004. - V. 375-377. - P. 213-218. doi: 10.1016/j.msea.2003.10.257.
- Yeh, J.-W. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes /j.W. Yeh, S.-K. Chen, S.-J. Lin et al. // Advanced Engineering Materials. - 2004. - V.6. - I. 5. - P. 299-303. doi: 10.1002/adem.200300567.
- Senkov, O.N. Development and exploration of refractory high entropy alloys - a review / O.N. Senkov, D.B. Miracle, K.J. Chaput, J.-P. Couzinie // Journal of Materials Research. - 2018. - V. 33. - I. 19. - P. 3092-3128. doi: 10.1557/jmr.2018.153.
- Senkov, O.N. Refractory high-entropy alloys / O.N. Senkov, G.B. Wilks, D.B. Miracle et al. // Intermetallics. - 2010. - V. 18. - I. 9. - P. 1758-1765. doi: 10.1016/j.intermet.2010.05.014.
- Schuh, B. Thermodynamic stability and mechanical properties of nanocrystalline high-entropy alloys / B. Schuh // Doctoral Thesis. - Leoben: Erich Schmid Institute of Materials Science, 2018. - XII+126 p.
- Senkov, O.N. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy / O.N. Senkov, J.M. Scott, S.V. Senkova et al. // Journal of Materials Science. - 2012. - V. 47. - I. 9. - P. 4062-4074. doi: 10.1007/s10853-012-6260-2.
- Senkov, O.N. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy / O.N. Senkov, J.M. Scott, S.V. Senkova et al. // Journal of Alloys and Compounds. - 2011. - V. 509. - I. 20. - P. 6043-6048. doi: 10.1016/j.jallcom.2011.02.171.
- Coury, F.G. Solid-solution strengthening in refractory high entropy alloys / F.G. Coury, M. Kaufman, A.J. Clarke // Acta Materialia. - 2019. - V. 175. - P. 66-81. doi: 10.1016/j.actamat.2019.06.006.
- Jayaraj, J. Corrosion behavior and surface film characterization of TaNbHfZrTi high entropy alloy in aggressive nitric acid medium /j. Jayaraj, C. Thinaharan, S. Ningshen et al. // Intermetallics. - 2017. - V. 89. - P. 123-132. doi: 10.1016/j.intermet.2017.06.002.
- Manea, C.A. New HfNbTaTiZr high-entropy alloy coatings produced by electrospark deposition with high corrosion resistance / C.A. Manea, M. Sohaciu, R. Stefănoiu et al. // Materials. - 2021. - V. 14. - I. 15. - Art. № 4333. - 10 p. doi: 10.3390/ma14154333.
- Cheng, Z. Irradiation effects in high-entropy alloys and their applications / Z. Cheng, J. Sun, X. Gao et al. // Journal of Alloys and Compounds. - 2023. - V. 930. - Art. № 166768. - P.71. doi: 10.1016/j.jallcom.2022.166768.
- Slobodyan, M. Recent advances and outstanding challenges for implementation of high entropy alloys as structural materials / M. Slobodyan, E. Pesterev, A. Markov // Materials Today Communications. - 2023. - V. 36. - Art.№ 106422. - 82 p. doi: 10.1016/j.mtcomm.2023.106422.
- Koželj, P. Discovery of a superconducting high-entropy alloy / P. Koželj, S. Vortnik, A. Jelen et al. // Physical Review Letters. - 2014. - V. 113. - I. 10. - P. 107001-1-107001-5. doi: 10.1103/PhysRevLett.113.107001.
- Zýka, J. Structure and mechanical properties of TaNbHfZrTi high entropy alloy /j. Zýka, J. Málek, Z. Pala et al. // 24th International Conference on Metallurgy and Materials (Metal 2015), June 3-5, 2015, Brno, Czech Republic: conference paper. - Ostrava: TANGER Ltd., 2015. - P. 1687-1692.
- Eisenbarth, E. Biocompatibility of stabilizing elements of titanium alloys / E. Eisenbarth, D. Velten, M. Müller et al. // Biomaterials. - 2004. - V. 25. - I. 26. - P. 5705-5713. doi: 10.1016/j.biomaterials.2004.01.021.
- Grandin, H.M. A review of titanium zirconium (TiZr) alloys for use in endosseous dental implants / H.M. Grandin, S. Berner, M. Dard // Materials. - 2012. - V. 5. - I. 8. - P. 1348-1360. doi: 10.3390/ma5081348.
- Biesiekierski, A. A new look at biomedical Ti-based shape memory alloys / A. Biesiekierski, J. Wang, M.A.-H. Gepreel, C. Wen // Acta Biomaterialia. - 2012. - V.8. - I. 5. - P. 1661-1669. doi: 10.1016/j.actbio.2012.01.018.
- Alven, S. Electrospun nanofibers/nanofibrous scaffolds loaded with silver nanoparticles as effective antibacterial wound dressing materials / S. Alven, B. Buyana, Z. Feketshane, B.A. Aderibigbe // Pharmaceutics. - 2021. - V. 13. - I. 7. - Art. № 964. - 18 p. doi: 10.3390/pharmaceutics13070964.
- Lee, D. Preparation of antibacterial chitosan membranes containing silver nanoparticles for dental barrier membrane applications / D. Lee, S.J. Lee, J.-H. Moon et al. // Journal of Industrial and Engineering Chemistry. - 2018. - V. 66. - P. 196-202. doi: 10.1016/j.jiec.2018.05.030.
- Canales, D.A. Fabrication and assessment of bifunctional electrospun poly(l-lactic acid) scaffolds with bioglass and zinc oxide nanoparticles for bone tissue engineering / D.A. Canales, N. Piñones, M. Saavedra et al. // International Journal of Biological Macromolecules. - 2023. - V. 228. - P. 78-88. doi: 10.1016/j.ijbiomac.2022.12.195.
- Khan, A. ur R. Exploration of the antibacterial and wound healing potential of a PLGA/silk fibroin based electrospun membrane loaded with zinc oxide nanoparticles / A. ur R. Khan, K. Huang, Z. Jinzhong et al. // Journal of Materials Chemistry B. - 2021. - V. 9. - I. 5. - P. 1452-1465. doi: 10.1039/D0TB02822C.
- Al-Saeedi, S.I. Antibacterial potency, cell viability and morphological implications of copper oxide nanoparticles encapsulated into cellulose acetate nanofibrous scaffolds / S.I. Al-Saeedi, N.S. Al-Kadhi, G.M. Al-Senani et al. // International Journal of Biological Macromolecules. - 2021. - V. 182. - P. 464-471. doi: 10.1016/j.ijbiomac.2021.04.013.
- Hashmi, M. Copper oxide (CuO) loaded polyacrylonitrile (PAN) nanofiber membranes for antimicrobial breath mask applications / M. Hashmi, S. Ullah, I.S. Kim // Current Research in Biotechnology. - 2019. - V. 1. - P. 1-10. doi: 10.1016/j.crbiot.2019.07.001.
- Rai, M. Silver nanoparticles as a new generation of antimicrobials / M. Rai, A. Yadav, A. Gade // Biotechnology Advances. - 2009. - V.27. - I. 1. - P. 76-83. doi: 10.1016/j.biotechadv.2008.09.002.
- Wang, L. The antimicrobial activity of nanoparticles: present situation and prospects for the future / L. Wang, C. Hu, L. Shao // International Journal of Nanomedicine. - 2017. - V. 12. - P. 1227-1249. doi: 10.2147/IJN.S121956.
- Lenis, J.A. Structure, morphology, adhesion and in vitro biological evaluation of antibacterial multi-layer HA-Ag-SiO2-TiN-Ti coatings obtained by RF magnetron sputtering for biomedical applications /j.A. Lenis, P. Rico, J.L.G. Ribelles et al. // Materials Science and Engineering: C. - 2020. - V. 116. - Art. № 111268. - 50 p. doi: 10.1016/j.msec.2020.111268.
- He, X. Biocompatibility, corrosion resistance and antibacterial activity of TiO2/CuO coating on titanium / X. He, G. Zhang, X. Wang et al. // Ceramics International. - 2017. - V. 43. - No. 18. - P. 16185-16195. doi: 10.1016/j.ceramint.2017.08.196.
- Heidenau, F. A novel antibacterial titania coating: metal ion toxicity and in vitro surface colonization / F. Heidenau, W. Mittelmeier, R. Detsch, M. Haenle, F. Stenzel, G. Ziegler, H. Gollwitzer // Journal of Materials Science: Materials in Medicine. - 2005. - V. 16. - I. 10. - P. 883-888. doi: 10.1007/s10856-005-4422-3.
- Ivanov, Yu.F. Structure and properties of a HfNbTaTiZr cathode and a coating formed through its vacuum arc evaporation / Yu.F. Ivanov, Yu.H. Akhmadeev, N.A. Prokopenko et al. // Bulletin of the Russian Academy of Sciences: Physics. - 2023. - V. 87. - I. 2. suppl. - P. S250-S256. doi: 10.1134/S1062873823704701.
- Иванов, Ю.Ф. Особенности структурно-фазового состояния пленки на основе высокоэнтропийного сплава AlNbTiZiCu, синтезированной путем осаждения многоэлементной металлической плазмы / Ю.Ф. Иванов, Ю.А. Абзаев, А.А. Клопотов и др. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2021. - Вып. 13. - С. 693-707. doi: 10.26456/pcascnn/2021.13.693.
- Binary alloy phase diagrams; ed. by T.B. Massalski: in 2 volumes. - Ohio: ASM International, Materials Park, 1986. - XIII+2224 p.
- Khegai, I.K. Examination of the Ti-Zr-Nb system / I.K. Khegai, P.B. Budberg // Russian Metallurgy (Metally). - 1971. - № 1. - P. 141-144.
- Arroyave, R. Kaufman L. Thermodynamic assessment of the Cu-Ti-Zr system / R. Arroyave, T.W. Eagar, L. Kaufman // Journal of Alloys and Compounds. - 2003. - V. 351. - I. 1-2. - P. 158-170. doi: 10.1016/S0925-8388(02)01035-6.
- Григорович, В.К. Периодический закон Менделеева и электронное строение металлов: К 100-летию со дня открытия периодического закона / В.К. Григорович; ред. А. М. Самарин. - М.: Наука, 1966. - 287 с.
补充文件

