Comparative studies of structural features of LiNbO3:Er:Zn crystals of different genesis

Capa

Citar

Texto integral

Resumo

Comparative studies of double-doped LiNbO3:Er:Zn crystals of different genesis have been carried out using infrared absorption spectroscopy (in the region of OH-- group stretching vibrations) and Raman spectroscopy. A LiNbO3:Er (0,53 mol.%): Zn (4,02 mol.%) crystal obtained by solid-phase doping and a LiNbO3:Er (0,75 mol.%): Zn (3,82 mol.%) crystal obtained by homogeneous doping were used in the study. No significant changes have been recorded in the infrared absorption spectra and Raman spectra of crystals obtained using different technologies. Minor changes in the main parameters of the absorption bands with frequencies of 3483 and 3492 cm-1 have been detected in the infrared absorption spectra. This may be due to the higher concentration of zinc dopant in the LiNbO3:Er (0,53 mol.%): Zn (4,02 mol.%) crystal. Measuring the half-width parameter of the band with a frequency of 271 cm-1 in the Raman spectra of the studied crystals helped to establish that the LiNbO3:Er (0,53 mol.%): Zn (4,02 mol.%) crystal has a higher ordering of the structural units of the cation sublattice compared to the LiNbO3:Er (0,75 mol.%): Zn (3,82 mol.%) crystal.

Sobre autores

Lubov' Bobreva

Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials - Subdivision of the Federal Research Centre «Kola Science Centre of the RAS

Email: l.bobreva@ksc.ru
Ph. D., Researcher, Vibrational Spectroscopy Sector of the Electronic Engineering Materials Laboratory

Roman Titov

Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials - Subdivision of the Federal Research Centre «Kola Science Centre of the RAS

Ph. D., Junior Researcher, Vibrational Spectroscopy Sector of the Electronic Engineering Materials Laboratory

Maxim Smirnov

Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials - Subdivision of the Federal Research Centre «Kola Science Centre of the RAS

Ph. D., Researcher, Vibrational Spectroscopy Sector of the Electronic Engineering Materials Laboratory

Irina Biryukova

Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials - Subdivision of the Federal Research Centre «Kola Science Centre of the RAS

Ph. D., Leading Researcher, Materials of the Electronic Engineering Laboratory

Sofja Masloboeva

Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials - Subdivision of the Federal Research Centre «Kola Science Centre of the RAS

Ph. D., Assistant Professor, Leading Researcher, Materials of the Electronic Engineering Laboratory

Alexander Pyatyshev

P.N. Lebedev Physical Institute of the RAS

Ph. D., Senior Researcher, Laboratory of Raman Light Scattering

Nikolay Sidorov

Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials - Subdivision of the Federal Research Centre «Kola Science Centre of the RAS

Dr. Sc., Professor, Chief Researcher and as Head of Vibrational Spectroscopy Sector of the Electronic Engineering Materials Laboratory

Mikhail Palatnikov

Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials - Subdivision of the Federal Research Centre «Kola Science Centre of the RAS

Dr. Sc., Chief Researcher and as Head of the Electronic Engineering Materials Laboratory

Bibliografia

  1. Mignotte, C. Structural characterization for Er3+ -doped oxide materials potentially useful as optical devices / C. Mignotte // Applied Surface Science. - 2004. - V. 226. - I. 4. - P. 335-370. doi: 10.1016/j.apsusc.2003.10.051.
  2. Qi, Y.Integrated lithium niobate photonics / Y. Qi, Y. Li // Nanophotonics. -2020. - V. 9. - I. 6. - P. 1287-1320. doi: 10.1515/nanoph-2020-0013.
  3. Núñez, L. Site-selective up-conversion in LiNbO3:Er3+ / L. Núñez, B. Herreros, R. Duchowicz et al. // Journal of Luminescence. - 1994. -V. 60-61. - P. 81-84. doi: 10.1016/0022-2313(94)90099-X.
  4. Milori, D.M.B.P. Optical and ESR study of Er + in LiNbO3 / D.M.B.P. Milori, I.J. Moraes, A.C. Hernandes et al. // Physical Review B. - 1995. - V. 51. - I. 5. - P. 3206-3209. doi: 10.1103/PhysRevB.51.3206.
  5. Qian, Y. Influence of Zn2+ ions concentration on the optical properties of Zn/Er:LiNbO3 crystals / Y. Qian, R. Wang, L. Xing et. al. // Crystal Research and Technology - 2011. - V. 46. - I. 11. - P. 1137-1142. doi: 10.1002/crat.201100254.
  6. Chen, Y. Effect of Mg concentration on the domain reversal of Mg-doped LiNbO3 / Y. Chen, W. Yan, J. Guo et al. // Applied Physics Letters. - 2005. - V. 87. - I. 21. - P. 212904-1-212904-3. doi: 10.1063/1.2135389.
  7. Volk, T.R. Optical-damage-resistant LiNbO3:Zn crystal / T.R. Volk, V.I. Pryalkin, N.M.Rubinina // Optics Letters - 1990 - V. 46. - I. 18. - P. 996-998. doi: 10.1364/OL.15.000996.
  8. Сидоров, Н.В. Ниобат лития: дефекты, фоторефракция, колебательный спектр, поляритоны / Н.В. Сидоров, Т.Р. Волк, Б.Н. Маврин, В.Т. Калинников. - М.: Наука, 2003. - 255 с.
  9. Kumaragurubaran, S. Domain inversion and optical damage in Zn doped near-stoichiometric lithium niobate crystal / S. Kumaragurubaran, S. Takekawa, M. Nakamura et. al. // Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, 22-27 May 2005, Baltimore, Maryland United State. Washington: Optica Publishing Group, 2005. Paper id CMW2. - P. 393-395. doi: 10.1109/cleo.2005.201790.
  10. Палатников, М.Н. Фундаментальные аспекты технологии сильно легированных кристаллов ниобата лития / М.Н. Палатников, Н.В. Сидоров, О.В. Макарова, И.В. Бирюкова. - Апатиты: КНЦ РАН, 2017. - 241 с.
  11. Lеngyel, K. Growth, defect structure, and THz application of stoichiometric lithium niobate / K. Lengyel, Á. Péter, L. Kovács et al. // Applied Physics Reviews. - 2015. - V. 2. - I. 4. - Р. 040601-1-040601-28. doi: 10.1063/1.4929917.
  12. Biryukova, I.V. Study of the effect of dopant concentration on the optical uniformity and photorefractive properties of LiNbO3:Er:Zn single crystals / I.V. Biryukova, R.A. Titov, N.A. Teplyakova et al. // Technical Physics. - 2023. - V. 68. - I. 11. - P. 1459-1467. doi: 10.61011/TP.2023.11.57496.162-23.
  13. Masloboeva, S.M. Preparation and characterization of lithium niobate single crystals doped with zinc and erbium / S.M. Masloboeva, I.N. Efremov, I.V. Biryukova et al. // Inorganic Materials. - 2021. - V. 57. - I. 7. - P. 701-709. doi: 10.1134/S0020168521070116.
  14. Iyi, N.Comparative study of defect structures in lithium niobate with different compositions / N. Iyi, K. Kitamura, F. Izumi et al. // Journal of Solid State Chemistry. - 1992. - V. 101. - I. 2. - P. 340-352. doi: 10.1016/0022-4596(92)90189-3.
  15. Cabrera, J.M. Hydrogen in lithium niobate /j.M. Cabrera, J. Olivares, M. Carrascosa et al. // Advances in Physics. - 1996. - V. 45. - I. 5. - P. 349-392. doi: 10.1080/00018739600101517.
  16. Bermúdez, V. Opposite domain formation in Er-doped LiNbO3 bulk crystals grown by the off-centered Czochralski technique / V. Bermúdez, M.D Serrano, P.S. Dutta et al. // Journal of Crystal Growth. - 1999. - V. 203. - I. 1-2. - P. 179-185. doi: 10.1016/s0022-0248(99)00087-1.
  17. Sanna, S. Raman scattering efficiency in LiTaO3 and LiNbO3 crystals / S. Sanna, S. Neufeld, M.Rusing et al. // Physical Review B. - 2015. - V. 91. - I. 22. - P. 224302-1-224302-9. doi: 10.1103/PhysRevB.91.224302.
  18. Margueron, S. Resolved E-symmetry zone-centre phonons in LiTaO3 and LiNbO3 / S. Margueron, A. Bartasyte, A.M. Glazer // Journal of Applied Physics. - 2012. - V. 111. - I. 10. - P. 104105-1-104105-6. doi: 10.1063/1.4716001.
  19. Fontana, M.D. Microstructure and defects probed by Raman spectroscopy in lithium niobate crystals and devices / M.D. Fontana, P. Bourson // Applied Physics Reviews. - 2015. - V. 2. - I. 10. - P. 040602-1-040602-14. doi: 10.1063/1.4934203.
  20. Caciuc, V. Ab initio structure and zone-center phonons in LiNbO3 / V. Caciuc, A.V. Postnikov, G. Borstel // Physical Review B. - 2000. - V. 61. - I. 13. - P. 8806-8813. doi: 10.1103/PhysRevB.61.8806.
  21. Palatnikov, M. Structure, optical properties and physicochemical features of LiNbO3:Mg,B crystals grown in a single technological cycle: an optical material for converting laser radiation / M. Palatnikov, O. Makarova, A. Kadetova et al. // Materials. - 2023. - V. 16. - I. 13. - Art. № 4541. - 30 p. doi: 10.3390/ma16134541.
  22. Palatnikov, M.N. Growth, structure, physical and chemical characteristics in a series of LiNbO3:Er crystals of different composition grown in one technological cycle / M.N. Palatnikov, A.V. Kadetova, L.A. Aleshina // Optics & Laser Technology. - 2022. - V. 147. - Art. № 107671. - 9 p. doi: 10.1016/j.optlastec.2021.107671.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».