Dynamic drag of dislocations in aged aluminum alloys under laser irradiation

Cover Page

Cite item

Full Text

Abstract

The above-barrier glide of dislocations under the action of laser pulses in aged aluminum alloys containing nanoscale defects (Guinier-Preston zones) is theoretically analyzed. The problem is solved using a theory of dynamic interaction of defects. Analytical expressions for the dependence of the dynamic yield strength on the concentration of copper atoms and the dislocation density in the aged aluminum alloy has been obtained. The conditions for the occurrence of extrema of the functions describing the dependence of the dynamic yield strength of the aluminum alloy on the concentration of copper atoms and the dislocation density are analyzed. The analysis confirms the conclusions of the dynamic interaction of defects theory on the conditions for the occurrence of non-monotonic dependences of the mechanical properties of metals and alloys on the concentration of structural defects. The maximum occurs at the point where the main contribution to the formation of the spectral gap changes. The minimum is at the point where the main contribution to the dynamic drag of dislocations changes. It is shown that the nanoscale defects (Guinier-Preston zones) play an important role in the occurrence of two extrema of these dependences. The existence and position of the extrema are determined by the competition of the interaction of the moving dislocation with other dislocations of the ensemble, copper atoms and Guinier-Preston zones. Numerical estimates of the volume concentration of Guinier-Preston zones, at which the existence of two extrema is possible, are performed. According to estimates, the concentration of Guinier-Preston zones is of 1023-1024 m-3.

About the authors

Vadim V. Malashenko

Donetsk Institute for Physics and Engineering named after A.A. Galkin

Email: malashenko@donfti.ru
Dr. Sc., Professor, Chief Researcher of the Department «Theory of kinetic and electronic properties of nonlinear systems»

References

  1. Prabhakaran, S. Laser shock peening without coating induced residual stress distribution, wettability characteristics and enhanced pitting corrosion resistance of austenitic stainless steel / S. Prabhakaran, A. Kulkarni, G. Vasanth et al. // Applied Surface Science. - 2017. - V. 428. - P. 17-30. doi: 10.1016/j.apsusc.2017.09.138.
  2. Li, P. The life prediction of notched aluminum alloy specimens after laser shock peening by TCD / P. Li, L. Susmel, M. Ma // International Journal of Fatigue. - 2023. - V. 176. - Art. № 107795. doi: 10.1016/j.ijfatigue.2023.107795.
  3. Tramontina, D. Molecular dynamics simulations of shock-induced plasticity in tantalum / D. Tramontina, E. Bringa, P. Erhart et al. // High Energy Density Physics. - 2014. - V. 10. - P. 9-15. doi: 10.1016/j.hedp.2013.10.007.
  4. Lee, J.H. High strain rate deformation of layered nanocomposites /j.H. Lee, D. Veysset, J.P. Singer, et al. // Nature Communications. - 2012. - V. 3. - Art. № 1164. - 9 p. doi: 10.1038/ncomms2166.
  5. Smith, R.F. High strain-rate plastic flow in Al and Fe / R.F. Smith, J.H. Eggert, R.E.Rudd, et al. // Journal of Applied Physics. - 2011. - V. 110. - I. 12. - P. 123515-1-123515-11. doi: 10.1063/1.3670001.
  6. Малашенко, В.В. Влияние наноразмерных дефектов на динамический предел текучести сплавов / В.В. Малашенко, Т.И. Малашенко // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2020. - Вып. 12. - C. 136-141. doi: 10.26456/pcascnn/2020.12.136.
  7. Малашенко, В.В. Влияние плотности дислокаций на динамический предел текучести облученных металлов с гигантской магнитострикцией / В.В. Малашенко // Физика твёрдого тела. - 2024. - Т. 66. - Вып. 8. - С. 1403-1407. doi: 10.61011/FTT.2024.08.58607.60.
  8. Malashenko, V.V. Dynamic drag of edge dislocation by circular prismatic loops and point defects / V.V. Malashenko // Physica B: Condensed Matter. - 2009. - V. 404. - I. 21. - Р. 3890-3893. doi: 10.1016/j.physb.2009.07.122.
  9. Sabzi, H.E.Composition and process parameter dependence of yield strength in laser powder bed fusion alloys / H.E. Sabzi, P.E.J. Rivera-Díaz-del-Castillo // Materials & Design. - 2020. - V. 195. - Art. № 109024. - 11 p. doi: 10.1016/j.matdes.2020.109024.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».