Study of the possibility of obtaining composites based on nanoscale hydroxyapatite reinforced with titanium oxide and calcium fluoride

封面

如何引用文章

全文:

详细

The article discusses the possibility of obtaining a hardened composite material with a porous structure based on nanostructured hydroxyapatite (HAP) synthesized by precipitation from a solution. The new material by the mechanochemical synthesis of hydroxyapatite with aluminum, silicon, nickel, hafnium and titanium was obtained. The synthesized samples are certified using modern physical and chemical methods of analysis. The influence of the qualitative and quantitative composition of the composite on the sintering processes and the strength characteristics of the studied samples is shown. It has been experimentally established that the Ca 10( PO 4)6( OH )2 - 15% CaF 2-15% TiOx . system is the most promising for the development of biocomposites based on it. Composite materials of this composition have a dense uniform structure with a high degree of crystallinity, with developed porosity, and are a promising material for further research in order to introduce it into medical practice. The possibility of practical application of the obtained composite material as a component of a bioactive coating is evaluated. A patent application has been filed for the developed composite material.

作者简介

Ekaterina Bogdanova

Institute of Solid State Chemistry of the Ural Branch of RAS; Giredmet

Ph. D., Senior Researcher, Laboratory of heterogeneous processes chemistry, Institute of Solid State Chemistry of the Ural Branch of RAS; Leading Researcher, Laboratory of electrochemical devices for hydrogen energy, JSC Giredmet

Vladimir Skachkov

Institute of Solid State Chemistry of the Ural Branch of RAS

Email: skachkov@ihim.uran.ru
Ph. D., Senior Researcher, Laboratory of heterogeneous processes chemistry

Ksenia Nefedova

Institute of Solid State Chemistry of the Ural Branch of RAS

Ph. D., Senior Researcher, Laboratory of promising and functional materials for CCS

参考

  1. Mondal, S. Hydroxyapatite: A journey from biomaterials to advanced functional materials / S. Mondal, S. Park, J. Choi et al. // Advances in Colloid and Interface Science. - 2023. - V. 321. - Art. № 103013. - 27 p. doi: 10.1016/j.cis.2023.103013.
  2. Баринов, С.М. Биокерамика на основе фосфатов кальция / С.М. Баринов, В.С. Комлев. - М.: Наука, 2006. - 204 с.
  3. Zhou,H. Nanoscale hydroxyapatite particles for bone tissue engineering / H. Zhou, J. Lee // Acta Biomaterialia. - 2011. - V. 7. - I. 7. - P. 2769-2781. doi: 10.1016/j.actbio.2011.03.019.
  4. Wang, H.X. In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process / H.X. Wang, S.K. Guan, X. Wang, C.X. Ren, L.G. Wang // Acta Biomaterialia. - 2010. - V. 6.- I. 5. - P. 1743-1748. doi: 10.1016/j.actbio.2009.12.009.
  5. John, K.R.St. 2 - Mechanical biocompatibility of dental materials / K.R.St. John // Biocompatibility of Dental Biomaterials; Woodhead Publishing Series in Biomaterials. - 2017. - P. 9-21. doi: 10.1016/B978-0-08-100884-3.00002-3.
  6. Kim, H-W. Effect of CaF2 on densification and properties of hydroxyapatite-zirconia composites for biomedical applications / H-W. Kim, Y-J. Noh, Y-H. Koh, H-E. Kim, H-M. Kim // Biomaterials. - 2002. - V. 23. - I. 20. - P. 4113-4121. doi: 10.1016/s0142-9612(02)00150-3.
  7. Guidara, A. The effects of MgO, ZrO2 and TiO2 as additives on microstructure and mechanical properties of Al2O3-FAP composite / A. Guidara, K. Chaari, S. Fakhfakh, J. Bouaziz // Materials Chemistry and Physics. - 2017. - V. 202. - P. 358-368. doi: 10.1016/j.matchemphys.2017.09.039.
  8. Htun, Z.L. Characterization of CaO-ZrO2 reinforced hap biocomposite for strength and toughness improvement / Z.L. Htun, N. Ahmad, A.A. Thant, A.-F.M. Noor // Procedia Chemistry. - 2016. - V. 19. - Р. 510-516. doi: 10.1016/j.proche.2016.03.046.
  9. Mobasherpour, I. Effect of the addition ZrO2-Al2O3 on nanocrystalline hydroxyapatite bending strength and fracture toughness / I. Mobasherpour, M. Solati Hashjin, S.S. Razavi-Toosi, R. Darvishi Kamachali // Ceramics International. - 2009. - V. 35. - I. 4. - Р. 1569-1574. doi: 10.1016/j.ceramint.2008.08.017.
  10. Placido, F. Titanium dioxide coatings for medical devices / F. Placido, A. McLean, A.A. Ogwu, W. Ademosu // In: Surgical Tools and Medical Devices; ed. by M.J. Jackson, W. Ahmed. - Cham: Springer, 2016. - pp. 81-91. doi: 10.1007/978-3-319-33489-9_3.
  11. Rempel, S.V. Impact of titanium monoxide stoichiometry and heat treatment on the properties of TiOy/HAp nanocomposite / S.V. Rempel, D.A. Eselevich, E.Yu. Gerasimov, A.A. Valeeva // Journal of Alloys and Compounds. - 2019. - V. 800. -P. 412-418. doi: 10.1016/j.jallcom.2019.06.057.
  12. Rempel, S.V. The effect of substoichiometric nanocrystalline titanium monoxide (TiOy) additions on the strength properties of hydroxyapatite (HAp) / S.V. Rempel, Е.А. Bogdanova, А.А. Valeeva et al. // Inorganic Materials. - 2016. - V. 52. - I. 5. - P. 476-482. doi: 10.1134/S0020168516050137.
  13. Rempel, S.V. Vacuum-made nanocomposite of low-temperature hydroxyapatite (HAp) and hard nonstoichiometric titanium monoxide (TiOy) with enhanced mechanical properties / S.V. Rempel, А.А. Valeeva, Е.А. Bogdanova et al. // Mendeleev Communications. - 2016. - V. 26. - I. 6. - P. 543-545. doi: 10.1016/j.mencom.2016.11.029.
  14. Farzin, A.Comparative evaluation of biocompatibility of dense nanostructured and microstructured hydroxyapatite/titania composites / A. Farzin, M. Ahmadian, M.H. Fathi // Materials Science and Engineering: C. - 2013. - V. 33. - I. 4. - P. 2251-2257. doi: 10.1016/j.msec.2013.01.053.
  15. Khalajabadi, S.Z. In vitro biodegradation, electrochemical corrosion evaluations and mechanical properties of an Mg/HA/TiO2 nanocomposite for biomedical applications / S.Z. Khalajabadi, N. Ahmad, S. Izman et al. // Journal of Alloys and Compounds. - 2017. - V. 696. - P. 768-781. doi: 10.1016/j.jallcom.2016.11.106.
  16. He, Y. Microstructure evolution, electrochemical properties and in-vitro properties of Ti-Nb-Zr based biocomposite by hydroxyapatite bioceramic / Y. He, Y. Zhang, Y. Jiang, R. Zhou, J. Zhang // Journal of Alloys and Compounds. - 2018. - V. 764. - P. 987-1002, doi: 10.1016/j.jallcom.2018.06.132.
  17. Chen, Y. Thermal and chemical stability of fluorohydroxyapatite ceramics with different fluorine contents / Y. Chen, X. Miao // Biomaterials. - 2005. - V. 26. - I. 11. - P. 1205-1210. doi: 10.1016/j.biomaterials.2004.04.027.
  18. Zang, M. Characterization, mechanical properties, corrosion behavior and bone-like apatite formation ability of fluorine substituted hydroxyapatite coating / M. Zang, L. Li, X. Sun et al. // Journal of the Mechanical Behavior of Biomedical Materials. - 2024. - V. 151. - Art. № 106364. - 8 p. DOI: https://doi.org/10.1016/j.jmbbm.2023.106364.
  19. Панкратов, А.С. Проблемы биоинтеграции микро- и нанокристаллического гидроксиапатита и подходы к их решению / А.С. Панкратов, И.С. Фадеева, В.В. Минайчев и др. // Гены и клетки. - 2018. - Т. 13. - № 3. - С. 46-51. doi: 10.23868/201811032.
  20. Пат. 2406693 Российская Федерация, МПК C01B25/32. Способ получения суспензии гидроксиапатита / Сабирзянов Н.А., Богданова Е.А., Хонина Т.Г.; заявитель и патентообладатель Федеральное государственное бюджетное учреждение науки Институт химии твердого тела УрО РАН. - № 2008140563/15; заявл. 13.10.08; опубл. 20.12.10, Бюл. № 35. - 5 с.
  21. Пат. 2652193 Российская Федерация, МПК C01B25/32. Способ получения суспензии апатита / Богданова Е.А., Сабирзянов Н.А., Скачков В.М.; заявитель и патентообладатель Федеральное государственное бюджетное учреждение науки Институт химии твердого тела УрО РАН. - № 2017113484; заявл. 19.04.17; опубл. 25.04.18, Бюл. № 12. - 5 с.
  22. Переверзев, Д.И. Получение биокомпозитов на основе наноразмерного гидроксиапатита, допированного оксидом циркония и фторидом кальция / Д.И. Переверзев, Е.А. Богданова, К.В. Нефедова // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2020. - Вып. 12. - С. 697-705. doi: 10.26456/pcascnn/2020.12.697.
  23. Богданова, Е.А. Получение биокомозитов на основе наноразмерного гидроксиапатита с соединениями титана / Е.А. Богданова, В.М. Скачков, К.В. Нефедова // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2022. - Вып. 14. - С. 521-530. doi: 10.26456/pcascnn/2022.14.521.
  24. Powder Diffraction File JCPDS-ICDD PDF-2 (Set 1-47). (Release, 2016). - Режим доступа: www.url: https://www.icdd.com/pdf-2/. - 15.02.2024.
  25. Bogdanova, E.A. Formation of nanodimensional structures in precipitated hydroxyapatite by fluorine substitution / E.A. Bogdanova, V.М. Skachkov, I.S. Medyankina et al. // SN Applied Sciences. - 2020. - V. 2. - I. 9. - Art. № 1565. - 7 p. doi: 10.1007/s42452-020-03388-5.
  26. Желатин. Технические условия: ГОСТ 11293-89. - Взамен ГОСТ 11293-78, ГОСТ 4821-77, ГОСТ ЭД 1 4821-87, ТУ 10-02-01-21-86; введ. 01.07.1991. - М.: ИПК Изд-во Стандартов, 1989. - 24 с.

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».