Kinetics of laser-induced crystallization of GeTe and Ge2Sb2Te5 chalcogenide phase-change material thin films

Cover Page

Cite item

Full Text

Abstract

The paper presents the results of theoretical analysis of crystallization of GeTe and Ge2Sb2Te5 thin films under the influence of pulse laser radiation. The phase transformations and the fraction of the crystalline phase was estimated on basis of the change of the probe optical reflection coefficient from the film sample surface. The formalism based on the Kolmogorov-Johnson-Mehl-Avrami theory was used to evaluate the kinetic behaviors of the phase transformation under the action of laser radiation. On the basis of experimental data of reflection changes during crystallization process of the researched materials, graphs were plotted and Avrami constants were determined. It is shown that GeTe exhibits a single step crystallization process associated with a high rate of nucleation and crystallite growth in all directions. The Ge2Sb2Te5 alloy is characterized by a two-step crystallization process with a change in the Avrami constant due to the influence of many factors such as the film geometry, sputtering characteristics, etc. Such type of crystallization is explained by the predominance of the high-stochastic nucleation.

About the authors

Anton A. Burtsev

National Research Centre «Kurchatov Institute»

Researcher

Alexey V. Kiselev

National Research Centre «Kurchatov Institute»

Researcher

Vladimir A. Mikhalevsky

National Research Centre «Kurchatov Institute»

Researcher

Vitaly V. Ionin

National Research Centre «Kurchatov Institute»

Researcher

Alexey A. Nevzorov

National Research Centre «Kurchatov Institute»

Ph. D., Researcher

Nikolay N. Eliseev

National Research Centre «Kurchatov Institute»

Junior Researcher

Andrey A. Lotin

National Research Centre «Kurchatov Institute»; «Crystallography and Photonics» Federal Research Center of the Russian Academy of Sciences

Ph. D., Deputy Head of the branch «ILIT-Shatura»

References

  1. Phase change materials. science and applications / ed. by S. Raoux, M. Wutting. - New York: Springer Science+Business Media, LLC, 2009. - 450 p. doi: 10.1007/978-0-387-84874-7.
  2. Kolobov, A.V. Chalcogenides: metastability and phase change phenomena / A.V. Kolobov, J. Tominaga. - Berlin Heidelberg: Springer-Verlag, 2012. - XVI, 284 p. doi: 10.1007/978-3-642-28705-3.
  3. Wuttig, M. Phase-change materials for rewriteable data storage / M. Wuttig, N. Yamada // Nature materials. - 2010. - V. 6. - I. 11. - P. 824-832. doi: 10.1038/nmat2009.
  4. Sarwat, S.G. Materials science and engineering of phase change random access memory / S.G. Sarwat // Materials science and technology. - 2017. - V. 33. - I. 16. - P. 1890-1906. doi: 10.1080/02670836.2017.1341723.
  5. Zhang, W. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing/ W. Zhang, R. Mazzarello, M. Wuttig, E. Ma // Nature Reviews Materials. - 2019. - V. 4. - I. 3. - P. 150-168. doi: 10.1038/s41578-018-0076-x.
  6. Lian, C. Photonic (computational) memories: tunable nanophotonics for data storage and computing / C. Lian, C. Vagionas, T. Alexoudi et. al. // Nanophotonics. - 2022. - V. 11. - I. 17. - P. 3823-3854. doi: 10.1515/nanoph-2022-0089.
  7. Guo, P. A review of germanium-antimony-telluride phase change materials for non-volatile memories and optical modulators / P. Guo, A.M. Sarangan, I. Agha // Applied sciences. - 2019. - V. 9. - I. 3. - Art. № 530. - 26 p. doi: 10.3390/app9030530.
  8. Singh, K. A review on GeTe thin film-based phase-change materials / K. Singh, S. Kumari, H. Singh et al. // Applied Nanoscience. - 2023. - V. 13. - I. 1. - P. 95-110. doi: 10.1007/s13204-021-01911-7.
  9. Sahoo, D. GSST phase change materials and its utilization in optoelectronic devices: A review / D. Sahoo, R. Naik // Materials Research Bulletin. - 2022. - V. 148. - Art. № 111679. - 13 p. doi: 10.1016/j.materresbull.2021.111679.
  10. Bala, N. Recent advances in doped Ge2Sb2Te5 thin film based phase change memories / N. Bala, B. Khan, K. Singh et al. // Materials Advances. - 2023. - V. 4. - I. 3. - P. 747-768. doi: 10.1039/D2MA01047J.
  11. Yang, F. Effect of Si doping on the structure and optical properties of Ge2Sb2Te5 studied by ab initio calculations / F. Yang, X. Tang, T. Chen et al. // Computational Materials Science. - 2019. - V. 168. - P. 253-259. doi: 10.1016/j.commatsci.2019.05.019.
  12. Delaney, M. A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: Sb2S3 and Sb2Se3 / M. Delaney, I. Zeimpekis, D. Lawson et al. // Advanced Functional Materials. - 2020. - V. 30. - I. 36. - Art. № 2002447. - 10 p. doi: 10.1002/adfm.202002447.
  13. Wuttig, M. The science and technology of phase change materials / M. Wuttig, S. Raoux // Zeitschrift für anorganische und allgemeine Chemie. - 2012. - V. 638. - I. 15. - P. 2455-2465. doi: 10.1002/zaac.201200448.
  14. Abdollahramezani, S. Tunable nanophotonics enabled by chalcogenide phase-change materials / S. Abdollahramezani, O. Hemmatyar, H. Taghinejad et al.// Nanophotonics. - 2020. - V. 9. - I. 5. - P. 1189-1241. doi: 10.1515/nanoph-2020-0039.
  15. Kiselev, А.V. Transmissivity to reflectivity change delay phenomenon observed in GeTe thin films at laser-induced reamorphization / A.V. Kiselev, V.A. Mikhalevsky, A.A. Burtsev et al. // Optics & Laser Technology. - 2021. - V. 143. - Art. № 107305. - 6 p. doi: 10.1016/j.optlastec.2021.107305.
  16. Kiselev, А.V. Dynamics of reversible optical properties switching of Ge2Sb2Te5 thin films at laser-induced phase transitions / A.V. Kiselev, V.V. Ionin, A.A. Burtsev, et al. // Optics & Laser Technology. - 2022. - V. 147. - Art. № 107701. - 6 p. doi: 10.1016/j.optlastec.2021.107701.
  17. Huber, E. Laser-induced crystallization of amorphous GeTe: A time-resolved study / E. Huber, E.E. Marinero // Physical Review B. - 1987. - V. 36. - I. 3. - P. 1595-1604. doi: 10.1103/PhysRevB.36.1595.
  18. Weidenhof, V. Laser induced crystallization of amorphous Ge2Sb2Te5 films/ V. Weidenhof, I. Friedrich, S. Ziegler, M. Wuttig // Journal of Applied Physics. - 2001. - V. 89. - I. 6. - P. 3168-3176. doi: 10.1063/1.1351868.
  19. Колмогоров, А.Н. К статистической теории кристаллизации металлов / А.Н. Колмогоров // Известия Академии наук СССР. Серия математическая. - 1937. - Т. 1. - Вып. 3. - С. 355-359.
  20. Avrami, M. Kinetics of phase change. II Transformation-time relations for random distribution of nuclei / M. Avrami // The Journal of chemical physics. - 1940. - V. 8. - I. 2. - P. 212-224. doi: 10.1063/1.1750631.
  21. Кристиан, Дж.В. Теория превращений в металлах и сплавах. Часть 1. Термодинамика и общая кинетическая теория / Дж.В. Кристиан; пер. с англ. - М: Изд-во «Мир», 1978. - 806 с.
  22. Андреева, Л.В. Закономерности кристаллизации растворенных веществ из микрокапли / Л.В. Андреева, А.С. Новоселова, П.В. Лебедев-Степанов и др. // Журнал технической физики. - 2007. - Т. 77. - № 2. - C. 22-30.
  23. Бурцев, А.А. Анализ кристаллических структур на поверхности нержавеющей стали / А.А. Бурцев, О.Я. Бутковский // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов.- 2019. - Вып. 11. - С. 107-114. doi: 10.26456/pcascnn/2019.11.107. - EDN SPPWYG.
  24. Lu, Q.M. Microstructural measurements of amorphous GeTe crystallization by hot-stage optical microscopy / Q.M. Lu, M. Libera // Journal of Applied Physics. - 1995. - V. 77. - I. 2. - P. 517-521. doi: 10.1063/1.359034.
  25. Zhou, G.F. Materials aspects in phase change optical recording/ G.F. Zhou // Materials Science and Engineering: A. - 2001. - V. 304-306. - P. 73-80. doi: 10.1016/S0921-5093(00)01448-9.
  26. Yang, I. Effect of doped nitrogen on the crystallization behaviors of Ge2Sb2Te5 / I. Yang, K. Do, H.J. Chang et al. // Journal of The Electrochemical Society. - 2010. - V. 157. - № 4. - P. H483-H486. doi: 10.1149/1.3321759.
  27. Do, K. Crystallization behaviors of laser induced Ge2Sb2Te5 in different amorphous states / K. Do, D. Lee, H. Sohn et al. // Journal of The Electrochemical Society. - 2010. - V. 157. - № 3. - P. H264-H267. doi: 10.1149/1.3274225.
  28. Ruitenberg, G. Determination of the isothermal nucleation and growth parameters for the crystallization of thin Ge2Sb2Te5 films / G. Ruitenberg, A.K. Petford-Long, R.C. Doole // Journal of Applied Physics. - 2002. - V. 92. - I. 6. - P. 3116-3123. doi: 10.1063/1.1503166.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».