WAVE STRAIN HARDENING IN THE ADDITIVE SYNTHETIC PROCESS

Cover Page

Cite item

Full Text

Abstract

The article discusses a hybrid technology that combines additive manufacturing of metal products using the WAAM technique and wave strain hardening aimed at improving the mechanical characteristics of the parts being created. WAAM technology is an additive manufacturing technique that through an electric arc melts metal wire, making three D metal products by layering. This technology combines the principles of traditional welding production and additive methods, making efficient parts production of complex shapes possible. Key advantages of WAAM technology are the following: speed of production, which reduces costs, as well as the ability to manufacture large and complex parts that are difficult or impossible to make using traditional techniques. However, when synthesizing products, the most popular problems are heterogeneity of microstructure, porosity and coarse- grain zones, which result in strength loss. To overcome these problems, it is recommended to use wave strain hardening, which provides a significant increase in the depth of hardening, creates compressive residual stresses and promotes fine grinding of the granular structure. A finite element model has been developed in ANSYS for the analysis of temperature fields and mechanical loads in a hybrid process. The simulation made it possible to optimize the modes of synthesis and wave strain hardening, taking into account thermal deformation effects. Experimental studies on the ES868 alloy have confirmed the effectiveness of the approach: the use of wave strain hardening resulted in structure refirenment (up to 10 times), hardness increase by 2,5 times, tensile strength by 1,5 times and yield strength by 2 times at one and the same toughness. The results prove the potential of hybrid WAAM technology and wave strain hardening for large-sized parts manufacturing with improved performance characteristics.

About the authors

Andrey Viktorovich Kirichek

Bryansk State Technical University

Email: avkbgtu@gmail.com
ORCID iD: 0000-0002-3823-0501
SPIN-code: 6910-0233
Scopus Author ID: 6506677389
professor, doctor of technical sciences

Dmitriy L'vovich Solovyev

Vladimir State University

Email: avkbgtu@gmail.com
ORCID iD: 0000-0002-4475-319X

Sergey Vladimirovich Barinov

Vladimir State University

Author for correspondence.
Email: avkbgtu@gmail.com
ORCID iD: 0000-0002-1341-446X

Svetlana Olegovna Fedonina

Bryansk State Technical University

Email: fedonina.sv2015@gmail.com
ORCID iD: 0000-0002-0472-4845
Department of Metal Cutting Machines and Tools, candidate of technical sciences

References

  1. Tomar Bunty, Shiva S., Nath Tameshwer. A review on wire arc additive manufacturing: Processing parameters, defects, quality improvement and recent advances // Ma terials Today Communications, 2022. vol. 31. art. no. 103739. doi: 10.1016/j.mtcomm.2022.103739
  2. Трубашевский Д.С. Аддитивные зарисовки, или решения для тех, кто не хочет продолжать терять деньги / Воронеж: Умное Производство, 2021. 203 с.
  3. Li Y., Su C., Zhu J. Comprehensive review of wire arc additive manufacturing: Hardware system, physical process, monitoring, property characterization, application and future prospects // Results in Engineering, 2022. vol. 13. art. no. 100330. doi: 10.1016/j.rineng.2021.100330.
  4. Srivastava M., Rathee S., Tiwari A., Dongre M. Wire arc additive manufacturing of metals: A review on processes, materials and their behaviour // Materials Chemistry and Physics. 2023. vol. 294. art. no. 126988. doi: 10.1016/j.matchemphys.2022.126988.
  5. Kou S. Welding Metallurgy – New Jersey: John Wiley & Sons, Inc, Hoboken, 2002. 461 p. doi: 10.1002/0471434027
  6. Langelandsvik G., Akselsen O.M., Furu T., Roven H.J. Review of aluminum alloy development for wire arc additive manufacturing // Materials, 2021. vol. 14 (18). p. 5370. doi: 10.3390/ma14185370.
  7. Береснев А.Г. Разумовский И.М. Горячее изостатическое прессование для аддитивного производства // Аддитивные технологии. № 4 (2017). С. 50−54
  8. Киричек А.В., Соловьев Д.Л., Федонина С.О. Проявление технологической наследственности при исследовании твердости деформационно-термически упрочненных сталей // Наукоемкие технологии в машиностроении. 2019. № 8 (98). С. 25−28.doi: 10.30987/article_5d2635сb4d7804.69744207
  9. Xu X., Ganguly S., Ding J., Dirisu P., Martina F., Liu X., Williams S. W. Improving mechanical properties of wire plus arc additively manufactured maraging steel through plastic deformation enhanced aging response, Materials Science and Engineering: A, Volume 747, 2019, P. 111−118, https://doi.org/10.1016/j.msea.2018.12.114.
  10. Исследование влияния деформационного упрочнения на механические свойства образцов сплава АМг5, полученных способом многослойной наплавки // М.Ф. Карташев, Г.Л. Пермяков, Д.Н. Трушников, М.Р. Миндибаев. Вестник МГТУ им. Г.И. Носова. 2019. Т. 17. № 3. С. 38−45
  11. Киричек А.В., Соловьев Д.Л., Лазуткин А.Г. Технология и оборудование статико-импульсной обработки поверхностным пластическим деформированием. Библиотека технолога. М.: Машиностроение, 2004. 288 с.
  12. Srivastava M., Rathee S., Tiwari A., Dongre M. Wire arc additive manufacturing of metals: A review on processes, materials and their behaviour // Materials Chemistry and Physics. 2023. Vol. 294. 126988. doi: 10.1016/j.matchemphys.2022.126988.
  13. Suvranshu P., Susanta K.S. Gas metal arc welding based additive manufacturing – a review // CIRP Journal of Manufacturing Science and Technology. 2021. Vol. 33. Pp. 398−442. doi: 10.1016/j.cirpj.2021.04.010.
  14. Киричек А.В., Баринов С.В., Греченева А.В. Расчет температурных полей на основе конечно-элементной модели процесса аддитивного синтеза изделия // Прикладная информатика. 2024. Т. 19. № 6. С. 113–128. doi: 10.37791/2687-0649-2024-19-6-113-128.
  15. Федонина С.О. Повышение качества синтезированных из проволоки деталей волновым термодеформационным упрочнением / Брянск. 2021. 154 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».