Тканевые резидентные CD8+ Т-клетки иммунологической памяти и их роль в иммунном ответе на инфекцию и вакцинацию

Обложка

Цитировать

Полный текст

Аннотация

Различные ткани организма содержат тканевые резидентные CD8+ Т-клетки иммунологической памяти — долгоживущие полифункциональные эффекторные клетки, которые образуются в ходе иммунного ответа на инфекцию и на длительное время заселяют ранее инфицированную ткань. Локализацию этих клеток определяет экспрессия набора адгезивных молекул, удерживающих клетку в определенном тканевом микроокружении, а также недостаток молекул, участвующих в выходе клеток в кровеносные и лимфатические сосуды. Программа, формирующая такой специфический фенотип, по-видимому, может быть запущена на разных стадиях созревания Т-лимфоцитов в ходе иммунного ответа. Резидентные CD8+ Т-клетки памяти защищают ткани от вирусов и других внутриклеточных паразитов, убивают трансформированные клетки, а в некоторых случаях участвуют в патогенезе иммуноопосредованных воспалительных заболеваний. Накопление резидентных Т-клеток памяти может быть индуцировано вакцинацией, и «нацеливание» вакцин на эти клетки, в дополнение к запуску протективного гуморального ответа, представляется желательным для предотвращения многих инфекций с внутриклеточной локализацией возбудителя. Резидентные CD8+ Т-клетки памяти в месте внедрения патогена могут быстрее, чем циркулирующие Т-клетки обеспечить защиту ткани, что важно для предотвращения быстро развивающихся вирусных инфекций. Размещение CD8+ Т-клеток памяти в тканях позволяет увеличивать пул этих клеток без явных ограничений, а значит, можно без потери эффективности увеличивать количество вакцинаций, стимулирующих эти клетки. Наконец, далеко не все антигенные эпитопы возбудителей, которые распознаются CD8+ T-клетками, подвергаются столь быстрым и систематическим изменениям, как поверхностные В-клеточные эпитопы тех же патогенов. Дополнительное вовлечение в ответ на вакцину резидентных CD8+ Т-клеток памяти может дать большую широту охвата вариантов патогена и способствовать развитию гетеросубтипического иммунитета. В обзоре приведены данные о резидентных CD8+ Т-клетках памяти различных тканей, их участии в иммунном ответе на инфекции и вакцинации, а также о молекулах, управляющих их локализацией.

Об авторах

Владимир Юрьевич Талаев

ФБУН Нижегородский научно-исследовательский институт эпидемиологии и микробиологии им. академика И.Н. Блохиной Роспотребнадзора

Автор, ответственный за переписку.
Email: talaev@inbox.ru

д.м.н., профессор, зав. лабораторией клеточной иммунологии

Россия, Нижний Новгород

Ольга Николаевна Бабайкина

ФБУН Нижегородский научно-исследовательский институт эпидемиологии и микробиологии им. академика И.Н. Блохиной Роспотребнадзора

Email: olga_babaykina@inbox.ru

к.м.н., старший научный сотрудник лаборатории клеточной иммунологии

Россия, Нижний Новгород

Мария Владимировна Светлова

ФБУН Нижегородский научно-исследовательский институт эпидемиологии и микробиологии им. академика И.Н. Блохиной Роспотребнадзора

Email: marya.talaeva@yandex.ru

к.б.н., старший научный сотрудник лаборатории клеточной иммунологии

Россия, Нижний Новгород

Ирина Евгеньевна Заиченко

ФБУН Нижегородский научно-исследовательский институт эпидемиологии и микробиологии им. академика И.Н. Блохиной Роспотребнадзора

Email: imm.irina@mail.ru

к.б.н., ведущий научный сотрудник лаборатории клеточной иммунологии

Россия, Нижний Новгород

Елена Викторовна Куркова

ФБУН Нижегородский научно-исследовательский институт эпидемиологии и микробиологии им. академика И.Н. Блохиной Роспотребнадзора

Email: el2v@mail.ru

к.б.н., старший научный сотрудник лаборатории клеточной иммунологии

Россия, Нижний Новгород

Список литературы

  1. Зуев Е.В., Маркова О.А., Кулемзин С.В., Потеряев Д.А., Литвинова Н.А., Короткевич И.А., Григорьева Т.В., Хамитов Р.А. Реакция нейтрализации псевдовирусных частиц вирус-нейтрализующими антителами как биоаналитическая часть клинического исследования вакцины Салнавак® // Инфекция и иммунитет. 2023. Т. 13, № 5. С. 853–863. [Zuev E.V., Markova O.A., Kulemzin S.V., Poteryaev D.A., Litvinova N.A., Korotkevich I.A., Grigor’eva T.V., Khamitov R.A. Virus neutralizing antibodies in pseudovirus particle neutralization reaction as a bioanalytical part of a Salnavac® vaccine clinical trial. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2023, vol. 13, no. 5, pp. 853–863. (In Russ.)] doi: 10.15789/2220-7619-VNA-8054
  2. Талаев В.Ю. Механизмы управления миграцией миелоидных дендритных клеток и клеток Лангерганса // Иммунология, 2012. Т. 33, № 2. С. 104–112. [Talayev V.Yu. The mechanisms controlling migration of myeloid dendritic cells and Langerhans cells. Immunologia = Immunologia, 2012, vol. 33, no. 2, pp. 104–112. (In Russ.)]
  3. Талаев В.Ю., Талаева М.В., Воронина Е.В., Заиченко И.Е., Неумоина Н.В., Перфилова К.М., Бабайкина О.Н. Экспрессия хемокиновых рецепторов на Т-хелперах крови при заболеваниях, ассоциированных с Helicobacter pylori: хроническом гастродуодените и язвенной болезни // Инфекция и иммунитет. 2019. Т. 9, № 2. С. 295–303. [Talayev V.Yu., Talaeva M.V., Voronina E.V., Zaichenko I.E., Neumoyna N.V., Perfilova K.M., Babaykina O.N. Chemokine receptor expression on peripheral blood T-helper cells in Helicobacter pylori-associated diseases: chronic gastroduodenitis and peptic ulcer disease. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2019, vol. 9, no. 2, pp. 295–303. (In Russ.)] doi: 10.15789/2220-7619-2019-2-295-303
  4. Arens R., Schoenberger S.P. Plasticity in programming of effector and memory CD8+ T-cell formation. Immunol. Rev., 2010, vol. 235, no. 1, pp. 190–205. doi: 10.1111/j.0105-2896.2010.00899.x
  5. Baaten B.J.G., Li C.R., Bradley L.M. Multifaceted regulation of T cells by CD44. Commun. Integr. Biol., 2010, vol. 3, no. 6, pp. 508–512. doi: 10.4161/cib.3.6.13495
  6. Bank I., Book M., Ware R. Functional role of VLA-1 (CD49A) in adhesion, cation-dependent spreading, and activation of cultured human T lymphocytes. Cell. Immunol., 1994, vol. 156, no. 2, pp. 424–437. doi: 10.1006/cimm.1994.1187
  7. Bankovich A.J., Shiow L.R., Cyster J.G. CD69 suppresses sphingosine 1-phosophate receptor-1 (S1P1) function through interaction with membrane helix 4. J. Biol. Chem., 2010, vol. 285, no. 29, pp. 22328–22337. doi: 10.1074/jbc.M110.123299
  8. Bartolome-Casado R., Landsverk O.J.B., Chauhan S.K., Richter L., Phung D., Greiff V., Risnes L.F., Yao Y., Neumann R.S., Yaqub S., Øyen O., Horneland R., Aandahl E.M., Paulsen V., Sollid L.M., Qiao S.W., Baekkevold E.S., Jahnsen F.L. Resident memory CD8 T cells persist for years in human small intestine. J. Exp. Med., 2019, vol. 216, no. 10, pp. 2412–2426. doi: 10.1084/jem.20190414
  9. Becker T.C., Wherry E.J., Boone D., Murali-Krishna K., Antia R., Ma A., Ahmed R. Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. J. Exp. Med., 2002, vol. 195, no. 12, pp. 1541–1548. doi: 10.1084/jem.20020369
  10. Behr F.M., Kragten N.A.M., Wesselink T.H., Nota B., van Lier R.A.W., Amsen D., Stark R., Hombrink P., van Gisbergen K.P.J.M. Blimp-1 Rather Than Hobit Drives the Formation of Tissue-Resident Memory CD8+ T Cells in the Lungs. Front. Immunol., 2019, vol. 10: 400. doi: 10.3389/fimmu.2019.00400
  11. Behr F.M., Parga-Vidal L., Kragten N.A.M., van Dam T.J.P., Wesselink T.H., Sheridan B.S., Arens R., van Lier R.A.W., Stark R., van Gisbergen K.P.J.M. Tissue-resident memory CD8+ T cells shape local and systemic secondary T cell responses. Nat. Immunol., 2020, vol. 21, no. 9, pp. 1070–1081. doi: 10.1038/s41590-020-0723-4
  12. Ben-Horin S., Bank I. The role of very late antigen-1 in immune-mediated inflammation. Clin. Immunol., 2004, vol. 113, no. 2, pp. 119–129. doi: 10.1016/j.clim.2004.06.007
  13. Beura L., Hamilton S., Bi K., Schenkel J.M., Odumade O.A., Casey K.A., Thompson E.A., Fraser K.A., Rosato P.C., Filali-Mouhim A., Sekaly R.P., Jenkins M.K., Vezys V., Haining W.N., Jameson S.C., Masopust D. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature, 2016, vol. 532, no. 7599, pp. 512–516. doi: 10.1038/nature17655
  14. Beura L.K., Fares-Frederickson N.J., Steinert E.M., Scott M.C., Thompson E.A., Fraser K.A., Schenkel J.M., Vezys V., Masopust D. CD4+ resident memory T cells dominate immunosurveillance and orchestrate local recall responses. J. Exp. Med., 2019, vol. 216, no. 5, pp. 1214–1229. doi: 10.1084/jem.20181365
  15. Bieber T., Rieger A., Stingl G., Sander E., Wanek P., Strobel I. CD69, an early activation antigen on lymphocytes, is constitutively expressed by human epidermal Langerhans cells. J. Invest. Dermatol., 1992, vol. 98, no. 5, pp. 771–776. doi: 10.1111/1523-1747
  16. Boyman O., Hefti H.P., Conrad C., Nickoloff B.J., Suter M., Nestle F.O. Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor α. J. Exp. Med., 2004, vol. 199, no. 5, pp. 731–736. doi: 10.1084/jem.20031482
  17. Budd R.C., Cerottini J.C., Macdonald H.R. Phenotypic identification of memory cytolytic T lymphocytes in a subset of Lyt-2+ cells. J. Immunol., 1987, vol. 138, no. 4, pp. 1009–1013.
  18. Bull N.C., Kaveh D.A., Garcia-Pelayo M.C., Stylianou E., McShane H., Hogarth P.J. Induction and maintenance of a phenotypically heterogeneous lung tissue-resident CD4+ T cell population following BCG immunisation. Vaccine, 2018, vol. 36, no. 39, pp. 5625–5635. doi: 10.1016/j.vaccine.2018.07.035
  19. Cepek K.L., Parker C.M., Madara J.L., Brenner M.B. Integrin alpha E beta 7 mediates adhesion of T lymphocytes to epithelial cells. J. Immunol., 1993, vol. 150, no. 8, pp. 3459–3470.
  20. Chen J., He Y., Tu L., Duan L. Dual immune functions of IL-33 in inflammatory bowel disease. Histol. Histopathol., 2020, vol. 35, no. 2, pp. 137–146. doi: 10.14670/HH-18-149
  21. Cheuk S., Schlums H., Gallais Serezal I., Martini E., Chiang S.C., Marquardt N., Gibbs A., Detlofsson E., Introini A., Forkel M., Höög C., Tjernlund A., Michaëlsson J., Folkersen L., Mjösberg J., Blomqvist L., Ehrström M., Ståhle M., Bryceson Y.T., Eidsmo L. CD49a expression defines tissue-resident CD8+ T cells poised for cytotoxic function in human skin. Immunity, 2017, vol. 46, no. 2, pp. 287–300. doi: 10.1016/j.immuni.2017.01.009
  22. Christo S.N., Park S.L., Mueller S.N., Mackay L.K. The Multifaceted Role of Tissue-Resident Memory T Cells. Annu. Rev. Immunol., 2024, vol. 42, no. 1, pp. 317–345. doi: 10.1146/annurev-immunol-101320-020220
  23. Clark R.A., Chong B., Mirchandani N., Brinster N.K., Yamanaka K., Dowgiert R.K., Kupper T.S. The vast majority of CLA+ T cells are resident in normal skin. J. Immunol., 2006, vol. 176, no. 7, pp. 4431–4439. doi: 10.4049/jimmunol.176.7.4431
  24. Clarke T.B., Davis K.M., Lysenko E.S., Zhou A.Y., Yu Y., Weiser J.N. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat. Med., 2010, vol. 16, no. 2, pp. 228–231. doi: 10.1038/nm.2087
  25. Connor L.M., Harvie M.C., Rich F.J., Quinn K.M., Brinkmann V., Le Gros G., Kirman J.R. A key role for lung-resident memory lymphocytes in protective immune responses after BCG vaccination. Eur. J. Immunol., 2010, vol. 40, no. 9, pp. 2482–2492. doi: 10.1002/eji.200940279
  26. Corridoni D., Antanaviciute A., Gupta T., Fawkner-Corbett D., Aulicino A., Jagielowicz M., Parikh K., Repapi E., Taylor S., Ishikawa D., Hatano R., Yamada T., Xin W., Slawinski H., Bowden R., Napolitani G., Brain O., Morimoto C., Koohy H., Simmons A. Single-cell atlas of colonic CD8+ T cells in ulcerative colitis. Nat. Med., 2020, vol. 26, no. 9, pp. 1480–1490. doi: 10.1038/s41591-020-1003-4
  27. Croft M., So T., Duan W., Soroosh P. The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol. Rev., 2009, vol. 229, no. 1, pp. 173–191. doi: 10.1111/j.1600-065X.2009.00766.x
  28. De Leur K., Dieterich M., Hesselink D.A., Corneth O.B.J., Dor F.J.M.F., de Graav G.N., Peeters A.M.A., Mulder A., Kimenai H.J.A.N., Claas F.H.J., Clahsen-van Groningen M.C., van der Laan L.J.W., Hendriks R.W., Baan C.C. Characterization of donor and recipient CD8 tissue-resident memory T cells in transplant nephrectomies. Sci. Rep., 2019, vol. 9, no. 1: 5984. doi: 10.1038/s41598-019-42401-9
  29. Djenidi F., Adam J., Goubar A., Durgeau A., Meurice G., de Montpréville V., Validire P., Besse B., Mami-Chouaib F. CD8+CD103+ tumor-infiltrating lymphocytes are tumor-specific tissue-resident memory T cells and a prognostic factor for survival in lung cancer patients. J. Immunol., 2015, vol. 194, no. 7, pp. 3475–3486. doi: 10.4049/jimmunol.1402711
  30. Drake L.Y., Kita H. IL-33: biological properties, functions, and roles in airway disease. Immunol. Rev., 2017, vol. 278, no. 1, pp. 173–184. doi: 10.1111/imr.12552
  31. El-Asady R., Yuan R., Liu K., Wang D., Gress R.E., Lucas P.J., Drachenberg C.B., Hadley G.A. TGF-β-dependent CD103 expression by CD8+ T cells promotes selective destruction of the host intestinal epithelium during graft-versus-host disease. J. Exp. Med., 2005, vol. 201, no. 10, pp. 1647–1657. doi: 10.1084/jem.20041044
  32. Ely K.H., Cookenham T., Roberts A.D., Woodland D.L. Memory T cell populations in the lung airways are maintained by continual recruitment. J. Immunol., 2006, vol. 176, no. 1, pp. 537–543. doi: 10.4049/jimmunol.176.1.537
  33. Ericsson A., Svensson M., Arya A., Agace W.W. CCL25/CCR9 promotes the induction and function of CD103 on intestinal intraepithelial lymphocytes. Eur. J. Immunol., 2004, vol. 34, no. 10, pp. 2720–2729. doi: 10.1002/eji.200425125
  34. Fluckiger A., Daillère R., Sassi M., Sixt B.S., Liu P., Loos F., Richard C., Rabu C., Alou M.T., Goubet A.G., Lemaitre F., Ferrere G., Derosa L., Duong C.P.M., Messaoudene M., Gagné A., Joubert P., De Sordi L., Debarbieux L., Simon S., Scarlata C.M., Ayyoub M., Palermo B., Facciolo F., Boidot R., Wheeler R., Boneca I.G., Sztupinszki Z., Papp K., Csabai I., Pasolli E., Segata N., Lopez-Otin C., Szallasi Z., Andre F., Iebba V., Quiniou V., Klatzmann D., Boukhalil J., Khelaifia S., Raoult D., Albiges L., Escudier B., Eggermont A., Mami-Chouaib F., Nistico P., Ghiringhelli F., Routy B., Labarrière N., Cattoir V., Kroemer G., Zitvogel L. Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage. Science, 2020, vol. 369, no. 6506, pp. 936–942. doi: 10.1126/science.aax0701
  35. Franciszkiewicz K., Le Floc’h A., Boutet M., Vergnon I., Schmitt A., Mami-Chouaib F. CD103 or LFA-1 engagement at the immune synapse between cytotoxic T cells and tumor cells promotes maturation and regulates T-cell effector functions. Cancer Res., 2013, vol. 73, no. 2, pp. 617–628. doi: 10.1158/0008-5472.CAN-12-2569
  36. Franciszkiewicz K., Le Floc’h A., Jalil A., Vigant F., Robert T., Vergnon I., Mackiewicz A., Benihoud K., Validire P., Chouaib S., Combadière C., Mami-Chouaib F. Intratumoral induction of CD103 triggers tumor-specific CTL function and CCR5-dependent T-cell retention. Cancer Res., 2009, vol. 69, no. 15, pp. 6249–6255. doi: 10.1158/0008-5472.CAN-08-3571
  37. Gebhardt T., Wakim L.M., Eidsmo L., Reading P.C., Heath W.R., Carbone F.R. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol., 2009, vol. 10, no. 5, pp. 524–530. doi: 10.1038/ni.1718
  38. Grau-Expósito J., Sánchez-Gaona N., Massana N., Suppi M., Astorga-Gamaza A., Perea D., Rosado J., Falcó A., Kirkegaard C., Torrella A., Planas B., Navarro J., Suanzes P., Álvarez-Sierra D., Ayora A., Sansano I., Esperalba J., Andrés C., Antón A., Ramón Y. Cajal S., Almirante B., Pujol-Borrell R., Falcó V., Burgos J., Buzón M.J., Genescà M. Peripheral and lung resident memory T cell responses against SARS-CoV-2. Nat. Commun., 2021, vol. 12, no. 1: 3010. doi: 10.1038/s41467-021-23333-3
  39. Hadley G.A., Bartlett S.T., Via C.S., Rostapshova E.A., Moainie S. The epithelial cell-specific integrin, CD103 (alpha E integrin), defines a novel subset of alloreactive CD8+ CTL. J. Immunol., 1997, vol. 159, no. 8, pp. 3748–3756.
  40. Hassan A.O., Shrihari S., Gorman M.J., Ying B., Yuan D., Raju S., Chen R.E., Dmitriev I.P., Kashentseva E., Adams L.J., Mann C., Davis-Gardner M.E., Suthar M.S., Shi P.Y., Saphire E.O., Fremont D.H., Curiel D.T., Alter G., Diamond M.S. An intranasal vaccine durably protects against SARS-CoV-2 variants in mice. Cell Rep., 2021, vol. 36, no. 6: 109452. doi: 10.1016/j.celrep.2021.109452
  41. Hogan R.J., Usherwood E.J., Zhong W., Roberts A.A., Dutton R.W., Harmsen A.G., Woodland D.L. Activated antigen-specific CD8+ T cells persist in the lungs following recovery from respiratory virus infections. J. Immunol., 2001, vol. 166, no. 3, pp. 1813–1822. doi: 10.4049/jimmunol.166.3.1813
  42. Hombrink P., Helbig C., Backer R.A., Piet B., Oja A.E., Stark R., Brasser G., Jongejan A., Jonkers R.E., Nota B., Basak O., Clevers H.C., Moerland P.D., Amsen D., van Lier R.A. Programs for the persistence, vigilance and control of human CD8 lung-resident memory T cells. Nat. Immunol., 2016, vol. 17, no. 12, pp. 1467–1478. doi: 10.1038/ni.3589
  43. Iwata M., Hirakiyama A., Eshima Y., Kagechika H., Kato C., Song S.Y. Retinoic acid imprints gut-homing specificity on T cells. Immunity, 2004, vol. 21, no. 4, pp. 527–538. doi: 10.1016/j.immuni.2004.08.011
  44. Jiang X., Clark R.A., Liu L., Wagers A.J., Fuhlbrigge R.C., Kupper T.S. Skin infection generates non-migratory memory CD8+ T(RM) cells providing global skin immunity. Nature, 2012, vol. 483, no. 7388, pp. 227–231. doi: 10.1038/nature10851
  45. Kakaradov B., Arsenio J., Widjaja C.E., He Z., Aigner S., Metz P.J., Yu B., Wehrens E.J., Lopez J., Kim S.H., Zuniga E.I., Goldrath A.W., Chang J.T., Yeo G.W. Early transcriptional and epigenetic regulation of CD8+ T cell differentiation revealed by single-cell RNA sequencing. Nat. Immunol., 2017, vol. 18, no. 4, pp. 422–432. doi: 10.1038/ni.3688
  46. Kennel S.J., Lankford T.K., Foote L.J., Shinpock S.G., Stringer C. CD44 expression on murine tissues. J. Cell Sci., 1993, vol. 104, no. 2, pp. 373–382. doi: 10.1242/jcs.104.2.373
  47. Koch M.R.A., Gong R., Friedrich V., Engelsberger V., Kretschmer L., Wanisch A., Jarosch S., Ralser A., Lugen B., Quante M., Vieth M., Vasapolli R., Schulz C., Buchholz V.R., Busch D.H., Mejías-Luque R., Gerhard M. CagA-specific Gastric CD8+ Tissue-Resident T Cells Control Helicobacter pylori During the Early Infection Phase. Gastroenterology, 2023, vol. 164, no. 4, pp. 550–566. doi: 10.1053/j.gastro.2022.12.016
  48. Koelle D.M., Posavad C.M., Barnum G.R., Johnson M.L., Frank J.M., Corey L. Clearance of HSV-2 from recurrent genital lesions correlates with infiltration of HSV-specific cytotoxic T lymphocytes. J. Clin. Invest., 1998, vol. 101, no. 7, pp. 1500–1508. doi: 10.1172/JCI1758
  49. Kohlmeier J.E., Miller S.C., Smith J., Lu B., Gerard C., Cookenham T., Roberts A.D., Woodland D.L. The chemokine receptor CCR5 plays a key role in the early memory CD8+ T cell response to respiratory virus infections. Immunity, 2008, vol. 29, no. 1, pp. 101–113. doi: 10.1016/j.immuni.2008.05.011
  50. Kok L., Masopust D., Schumacher T.N. The precursors of CD8 tissue resident memory T cells: from lymphoid organs to infected tissues. Nat. Rev. Immunol., 2022, vol. 22, no. 5, pp. 283–293. doi: 10.1038/s41577-021-00590-3
  51. Kuhn K. Basement membrane (type IV) collagen. Matrix Biol., 1995, vol. 14, no. 6, pp. 439–445. doi: 10.1016/0945-053X(95)90001-2
  52. Kumar B.V., Ma W., Miron M., Granot T., Guyer R.S., Carpenter D.J., Senda T., Sun X., Ho S.H., Lerner H., Friedman A.L., Shen Y., Farber D.L. Human Tissue-Resident Memory T Cells Are Defined by Core Transcriptional and Functional Signatures in Lymphoid and Mucosal Sites. Cell Rep., 2017, vol. 20, no. 13, pp. 2921–2934. doi: 10.1016/j.celrep.2017.08.078
  53. Künzli M., O’Flanagan S.D., LaRue M., Talukder P., Dileepan T., Stolley J.M., Soerens A.G., Quarnstrom C.F., Wijeyesinghe S., Ye Y., McPartlan J.S., Mitchell J.S., Mandl C.W., Vile R., Jenkins M.K., Ahmed R., Vezys V., Chahal J.S., Masopust D. Route of self-amplifying mRNA vaccination modulates the establishment of pulmonary resident memory CD8 and CD4 T cells. Sci. Immunol., 2022, vol. 7, no. 78: eadd3075. doi: 10.1126/sciimmunol.add3075
  54. Lange J., Rivera-Ballesteros O., Buggert M. Human mucosal tissue-resident memory T cells in health and disease. Mucosal Immunol., 2022, vol. 15, no. 3, pp. 389–397. doi: 10.1038/s41385-021-00467-7
  55. Lee Y.T., Suarez-Ramirez J.E., Wu T., Redman J.M., Bouchard K., Hadley G.A., Cauley L.S. Environmental and antigen receptor-derived signals support sustained surveillance of the lungs by pathogen-specific cytotoxic T lymphocytes. J. Virol., 2011, vol. 85, no. 9, pp. 4085–4094. doi: 10.1128/JVI.02493-10
  56. Leignadier J., Hardy M.P., Cloutier M., Rooney J., Labrecque N. Memory T-lymphocyte survival does not require T-cell receptor expression. Proc. Natl Acad. Sci. USA, 2008, vol. 105, no. 51, pp. 20440–20445. doi: 10.1073/pnas.0806289106
  57. Lesley J., Hascall V.C., Tammi M., Hyman R. Hyaluronan binding by cell surface CD44. J. Biol. Chem., 2000, vol. 275, no. 35, pp. 26967–26975. doi: 10.1074/jbc.M002527200
  58. Lesley J., Howes N., Perschl A., Hyman R. Hyaluronan binding function of CD44 is transiently activated on T cells during an in vivo immune response. J. Exp. Med., 1994, vol. 180, no. 1, pp. 383–387. doi: 10.1084/jem.180.1.383
  59. Lian C.G., Bueno E.M., Granter S.R., Laga A.C., Saavedra A.P., Lin W.M., Susa J.S., Zhan Q., Chandraker A.K., Tullius S.G., Pomahac B., Murphy G.F. Biomarker evaluation of face transplant rejection: association of donor T cells with target cell injury. Mod. Pathol., 2014, vol. 27, no. 6, pp. 788–799. doi: 10.1038/modpathol.2013.249
  60. Mackay L.K., Braun A., Macleod B.L., Collins N., Tebartz C., Bedoui S., Carbone F.R., Gebhardt T. Cutting edge: CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention. J. Immunol., 2015, vol. 194, no. 5, pp. 2059–2063. doi: 10.4049/jimmunol.1402256
  61. Mackay L.K., Minnich M., Kragten N.A., Liao Y., Nota B., Seillet C., Zaid A., Man K., Preston S., Freestone D., Braun A., Wynne-Jones E., Behr F.M., Stark R., Pellicci D.G., Godfrey D.I., Belz G.T., Pellegrini M., Gebhardt T., Busslinger M., Shi W., Carbone F.R., van Lier R.A., Kallies A., van Gisbergen K.P. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science, 2016, vol. 352, no. 6284, pp. 459–463. doi: 10.1126/science.aad2035
  62. Mackay L.K., Rahimpour A., Ma J.Z., Collins N., Stock A.T., Hafon M.L., Vega-Ramos J., Lauzurica P., Mueller S.N., Stefanovic T., Tscharke D.C., Heath W.R., Inouye M., Carbone F.R., Gebhardt T. The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin. Nat. Immunol., 2013, vol. 14, no. 12, pp. 1294–1301. doi: 10.1038/ni.2744
  63. Mackay L.K., Stock A.T., Ma J.Z., Jones C.M., Kent S.J., Mueller S.N., Heath W.R., Carbone F.R., Gebhardt T. Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc. Natl Acad. Sci. USA, 2012, vol. 109, no. 18, pp. 7037–7042. doi: 10.1073/pnas.1202288109
  64. Malik B.T., Byrne K.T., Vella J.L., Zhang P., Shabaneh T.B., Steinberg S.M., Molodtsov A.K., Bowers J.S., Angeles C.V., Paulos C.M., Huang Y.H., Turk M.J. Resident memory T cells in the skin mediate durable immunity to melanoma. Sci. Immunol., 2017, vol. 2, no. 10: eaam6346. doi: 10.1126/sciimmunol.aam6346
  65. Mani V., Bromley S.K., Äijö T., Mora-Buch R., Carrizosa E., Warner R.D., Hamze M., Sen D.R., Chasse A.Y., Lorant A., Griffith J.W., Rahimi R.A., McEntee C.P., Jeffrey K.L., Marangoni F., Travis M.A., Lacy-Hulbert A., Luster A.D., Mempel T.R. Migratory DCs activate TGF-β to precondition naïve CD8+ T cells for tissue-resident memory fate. Science, 2019, vol. 366, no. 6462: eaav5728. doi: 10.1126/science.aav5728
  66. Martin M.D., Condotta S.A., Harty J.T., Badovinac V.P. Population dynamics of naive and memory CD8 T cell responses after antigen stimulations in vivo. J. Immunol., 2012, vol. 188, no. 3, pp. 1255–1265. doi: 10.4049/jimmunol.1101579
  67. Masopust D., Choo D., Vezys V., Hofmann M., Pircher H. E-cadherin promotes accumulation of a unique memory CD8 T-cell population in murine salivary glands. Proc. Natl Acad. Sci. USA, 2011, vol. 108, no. 40, pp. 16741–16746. doi: 10.1073/pnas.1107200108
  68. Masopust D., Choo D., Vezys V., Wherry E.J., Duraiswamy J., Akondy R., Wang J., Casey K.A., Barber D.L., Kawamura K.S., Fraser K.A., Webby R.J., Brinkmann V., Butcher E.C., Newell K.A., Ahmed R. Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med., 2010, vol. 207, no. 3, pp. 553–564. doi: 10.1084/jem.20090858
  69. Masopust D., Vezys V., Wherry E.J., Barber D.L., Ahmed R. Cutting edge: gut microenvironment promotes differentiation of a unique memory CD8 T cell population. J. Immunol., 2006, vol. 176, no. 4, pp. 2079–2083. doi: 10.4049/jimmunol.176.4.2079
  70. Meharra E.J., Schon M., Hassett D., Parker C., Havran W., Gardner H. Reduced gut intraepithelial lymphocytes in VLA1 null mice. Cell Immunol., 2000, vol. 201, no. 1, pp. 1–5. doi: 10.1006/cimm.2000.1630
  71. Mikecz K., Brennan F.R., Kim J.H., Glant T.T. Anti-CD44 treatment abrogates tissue oedema and leukocyte infiltration in murine arthritis. Nat. Med., 1995, vol. 1, no. 6, pp. 558–563. doi: 10.1038/nm0695-558
  72. Milner J.J., Toma C., He Z., Kurd N.S., Nguyen Q.P., McDonald B., Quezada L., Widjaja C.E., Witherden D.A., Crowl J.T., Shaw L.A., Yeo G.W., Chang J.T., Omilusik K.D., Goldrath A.W. Heterogenous populations of tissue-resident CD8+ T cells are generated in response to infection and malignancy. Immunity, 2020, vol. 52, no. 5, pp. 808–824. doi: 10.1016/j.immuni.2020.04.007
  73. Milner J.J., Toma C., Yu B., Zhang K., Omilusik K., Phan A.T., Wang D., Getzler A.J., Nguyen T., Crotty S., Wang W., Pipkin M.E., Goldrath A.W. Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours. Nature, 2017, vol. 552, no. 7684, pp. 253–257. doi: 10.1038/nature24993
  74. Mora J.R., Bono M.R., Manjunath N., Weninger W., Cavanagh L.L., Rosemblatt M., Von Andrian U.H. Selective imprinting of gut-homing T cells by Peyer’s patch dendritic cells. Nature, 2003, vol. 424, no. 6944, pp. 88–93. doi: 10.1038/nature01726
  75. Mrass P., Kinjyo I., Ng L.G., Reiner S.L., Pure E., Weninger W. CD44 mediates successful interstitial navigation by killer T cells and enables efficient antitumor immunity. Immunity, 2008, vol. 29, no. 6, pp. 971–985. doi: 10.1016/j.immuni.2008.10.015
  76. Murali-Krishna K., Lau L.L., Sambhara S., Lemonnier F., Altman J., Ahmed R. Persistence of memory CD8 T cells in MHC class I-deficient mice. Science, 1999, vol. 286, no. 5443, pp. 1377–1381. doi: 10.1126/science.286.5443.1377
  77. Nandi A., Estess P., Siegelman M. Bimolecular complex between rolling and firm adhesion receptors required for cell arrest; CD44 association with VLA-4 in T cell extravasation. Immunity, 2004, vol. 20, no. 4, pp. 455–465. doi: 10.1016/S1074-7613(04)00077-9
  78. Niessl J., Sekine T., Lange J., Konya V., Forkel M., Maric J., Rao A., Mazzurana L., Kokkinou E., Weigel W., Llewellyn-Lacey S., Hodcroft E.B., Karlsson A.C., Fehrm J., Sundman J., Price D.A., Mjösberg J., Friberg D., Buggert M. Identification of resident memory CD8+ T cells with functional specificity for SARS-CoV-2 in unexposed oropharyngeal lymphoid tissue. Sci. Immunol., 2021, vol. 6, no. 64: eabk0894. doi: 10.1126/sciimmunol.abk0894
  79. Nizard M., Roussel H., Diniz M.O., Karaki S., Tran T., Voron T., Dransart E., Sandoval F., Riquet M., Rance B., Marcheteau E., Fabre E., Mandavit M., Terme M., Blanc C., Escudie J.B., Gibault L., Barthes F.L.P., Granier C., Ferreira L.C.S., Badoual C., Johannes L., Tartour E. Induction of resident memory T cells enhances the efficacy of cancer vaccine. Nat. Commun., 2017, vol. 8: 15221. doi: 10.1038/ncomms15221
  80. Obar J.J., Lefrançois L. Memory CD8+ T cell differentiation. Ann. N. Y. Acad. Sci., 2010, vol. 1183, no. 1, pp. 251–266. doi: 10.1111/j.1749-6632.2009.05126.x
  81. Ohnmacht C., Park J.H., Cording S., Wing J.B., Atarashi K., Obata Y., Gaboriau-Routhiau V., Marques R., Dulauroy S., Fedoseeva M., Busslinger M., Cerf-Bensussan N., Boneca I.G., Voehringer D., Hase K., Honda K., Sakaguchi S., Eberl G. Mucosal immunology. The microbiota regulates type 2 immunity through RORγt⁺ T cells. Science, 2015, vol. 349, no. 6251, pp. 989–993. doi: 10.1126/science.aac4263
  82. Osborn J.F., Hobbs S.J., Mooster J.L., Khan T.N., Kilgore A.M., Harbour J.C., Nolz J.C. Central memory CD8+ T cells become CD69+ tissue-residents during viral skin infection independent of CD62L-mediated lymph node surveillance. PLoS Pathog., 2019, vol. 15, no. 3: e1007633. doi: 10.1371/journal.ppat.1007633
  83. Overacre-Delgoffe A.E., Hand T.W. Regulation of tissue-resident memory T cells by the Microbiota. Mucosal Immunol., 2022, vol. 15, no. 3, pp. 408–417. doi: 10.1038/s41385-022-00491-1
  84. Parga-Vidal L., Behr F.M., Kragten N.A.M., Nota B., Wesselink T.H., Kavazović I., Covill L.E., Schuller M.B.P., Bryceson Y.T., Wensveen F.M., van Lier R.A.W., van Dam T.J.P., Stark R., van Gisbergen K.P.J.M. Hobit identifies tissue-resident memory T cell precursors that are regulated by Eomes. Sci. Immunol., 2021, vol. 6, no. 62: eabg3533. doi: 10.1126/sciimmunol.abg3533
  85. Pham T.H., Okada T., Matloubian M., Lo C.G., Cyster J.G. S1P1 receptor signaling overrides retention mediated by G alpha i-coupled receptors to promote T cell egress. Immunity, 2008, vol. 28, no. 1, pp. 122–133. doi: 10.1016/j.immuni.2007.11.017
  86. Pizzolla A., Nguyen T.H., Sant S., Jaffar J., Loudovaris T., Mannering S.I., Thomas P.G., Westall G.P., Kedzierska K., Wakim L.M. Influenza-specific lung-resident memory T cells are proliferative and polyfunctional and maintain diverse TCR profiles. J. Clin. Investig., 2018, vol. 128, no. 2, pp. 721–733. doi: 10.1172/JCI96957
  87. Purwar R., Campbell J., Murphy G., Richards W.G., Clark R.A., Kupper T.S. Resident memory T cells (T(RM)) are abundant in human lung: diversity, function, and antigen specificity. PLoS One, 2011, vol. 6, no. 1: e16245. doi: 10.1371/journal.pone.0016245
  88. Ray S.J., Franki S.N., Pierce R.H., Dimitrova S., Koteliansky V., Sprague A.G., Doherty P.C., de Fougerolles A.R., Topham D.J. The collagen binding alpha1beta1 integrin VLA-1 regulates CD8 T cell-mediated immune protection against heterologous influenza infection. Immunity, 2004, vol. 20, no. 2, pp. 167–179. doi: 10.1016/S1074-7613(04)00021-4
  89. Reddy M., Eirikis E., Davis C., Davis H.M., Prabhakar U. Comparative analysis of lymphocyte activation marker expression and cytokine secretion profile in stimulated human peripheral blood mononuclear cell cultures: an in vitro model to monitor cellular immune function. J. Immunol. Methods, 2004, vol. 293, no. 1–2, pp. 127–142. doi: 10.1016/j.jim.2004.07.006
  90. Richter M., Ray S.J., Chapman T.J., Austin S.J., Rebhahn J., Mosmann T.R., Gardner H., Kotelianski V., de Fougerolles A.R., Topham D.J. Collagen distribution and expression of collagen-binding alpha1beta1 (VLA-1) and alpha2beta1 (VLA-2) integrins on CD4 and CD8 T cells during influenza infection. J. Immunol., 2007, vol. 178, no. 7, pp. 4506–4516. doi: 10.4049/jimmunol.178.7.4506
  91. Richter M.V., Topham D.J. The alpha1beta1 integrin and TNF receptor II protect airway CD8+ effector T cells from apoptosis during influenza infection. J. Immunol., 2007, vol. 179, no. 8, pp. 5054–5063. doi: 10.4049/jimmunol.179.8.5054
  92. Roberts A.I., Brolin R.E., Ebert E.C. Integrin alpha1beta1 (VLA-1) mediates adhesion of activated intraepithelial lymphocytes to collagen. Immunology, 1999, vol. 97, no. 4, pp. 679–685. doi: 10.1046/j.1365-2567.1999.00812.x
  93. Rosé J.R., Williams M.B., Rott L.S., Butcher E.C., Greenberg H.B. Expression of the mucosal homing receptor alpha4beta7 correlates with the ability of CD8+ memory T cells to clear rotavirus infection. J. Virol., 1998, vol. 72, no. 1, pp. 726–730. doi: 10.1128/JVI.72.1.726-730.1998
  94. Roychoudhury P., Swan D.A., Duke E., Corey L., Zhu J., Davé V., Spuhler L.R., Lund J.M., Prlic M., Schiffer J.T. Tissue-resident T cell-derived cytokines eliminate herpes simplex virus-2-infected cells. J. Clin. Invest., 2020, vol. 130, no. 6, pp. 2903–2919. doi: 10.1172/JCI132583
  95. Sathaliyawala T., Kubota M., Yudanin N., Turner D., Camp P., Thome J.J., Bickham K.L., Lerner H., Goldstein M., Sykes M., Kato T., Farber D.L. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity, 2013, vol. 38, no. 1, pp. 187–197. doi: 10.1016/j.immuni.2012.09.020
  96. Schenkel J.M., Fraser K.A., Vezys V., Masopust D. Sensing and alarm function of resident memory CD8⁺ T cells. Nat. Immunol., 2013, vol. 14, no. 5, pp. 509–513. doi: 10.1038/ni.2568
  97. Schiffer J.T., Swan D.A., Roychoudhury P., Lund J.M., Prlic M., Zhu J., Wald A., Corey L. A Fixed Spatial Structure of CD8+ T Cells in Tissue during Chronic HSV-2 Infection. J. Immunol., 2018, vol. 201, no. 5, pp. 1522–1535. doi: 10.4049/jimmunol.1800471
  98. Schluns K.S., Lefrançois L. Cytokine control of memory T-cell development and survival. Nat. Rev. Immunol., 2003, vol. 3, no. 4, pp. 269–279. doi: 10.1038/nri1052
  99. Sefik E., Geva-Zatorsky N., Oh S., Konnikova L., Zemmour D., McGuire A.M., Burzyn D., Ortiz-Lopez A., Lobera M., Yang J., Ghosh S., Earl A., Snapper S.B., Jupp R., Kasper D., Mathis D., Benoist C. Mucosal immunology. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science, 2015, vol. 349, no. 6251, pp. 993–997. doi: 10.1126/science.aaa9420
  100. Sheridan B.S., Lefrançois L. Regional and mucosal memory T cells. Nat. Immunol., 2011, vol. 12, no. 6, pp. 485–491. doi: 10.1038/ni.2029
  101. Sheridan B.S., Pham Q.M., Lee Y.T., Cauley L.S., Puddington L., Lefrançois L. Oral infection drives a distinct population of intestinal resident memory CD8+ T cells with enhanced protective function. Immunity, 2014, vol. 40, no. 5, pp. 747–757. doi: 10.1016/j.immuni.2014.03.007
  102. Shin H., Iwasaki A. A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature, 2012, vol. 491, no. 7424, pp. 463–467. doi: 10.1038/nature11522
  103. Shiow L.R., Rosen D.B., Brdicková N., Xu Y., An J., Lanier L.L., Cyster J.G., Matloubian M. CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature, 2006, vol. 440, no. 7083, pp. 540–544. doi: 10.1038/nature04606
  104. Simms P.E., Ellis T.M. Utility of flow cytometric detection of CD69 expression as a rapid method for determining poly- and oligoclonal lymphocyte activation. Clin. Diagn. Lab. Immunol., 1996, vol. 3, no. 3, pp. 301–304. doi: 10.1128/cdli.3.3.301-304.1996
  105. Sinclair L.V., Finlay D., Feijoo C., Cornish G.H., Gray A., Ager A., Okkenhaug K., Hagenbeek T.J., Spits H., Cantrell D.A. Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking. Nat. Immunol., 2008, vol. 9, no. 5, pp. 513–521. doi: 10.1038/ni.1603
  106. Skon C.N., Lee J.Y., Anderson K.G., Masopust D., Hogquist K.A., Jameson S.C. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nat. Immunol., 2013, vol. 14, no. 12, pp. 1285–1293. doi: 10.1038/ni.2745
  107. Slutter B., Pewe L.L., Kaech S.M., Harty J.T. Lung airway-surveilling CXCR3(hi) memory CD8(+) T cells are critical for protection against influenza A virus. Immunity, 2013, vol. 39, no. 5, pp. 939–948. doi: 10.1016/j.immuni.2013.09.013
  108. Snyder M.E., Finlayson M.O., Connors T.J., Dogra P., Senda T., Bush E., Carpenter D., Marboe C., Benvenuto L., Shah L., Robbins H., Hook J.L., Sykes M., D’Ovidio F., Bacchetta M., Sonett J.R., Lederer D.J., Arcasoy S., Sims P.A., Farber D.L. Generation and persistence of human tissue-resident memory T cells in lung transplantation. Sci. Immunol., 2019, vol. 4, no. 33: eaav5581. doi: 10.1126/sciimmunol.aav5581
  109. Sojka D.K., Plougastel-Douglas B., Yang L., Pak-Wittel M.A., Artyomov M.N., Ivanova Y., Zhong C., Chase J.M., Rothman P.B., Yu J., Riley J.K., Zhu J., Tian Z., Yokoyama W.M. Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. Elife, 2014, vol. 3: e01659. doi: 10.7554/eLife.01659
  110. Sridhar S., Begom S., Bermingham A., Hoschler K., Adamson W., Carman W., Bean T., Barclay W., Deeks J.J., Lalvani A. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat. Med., 2013, vol. 19, no. 10, pp. 1305–1312. doi: 10.1038/nm.3350
  111. Takamura S., Kohlmeier J.E. Establishment and Maintenance of Conventional and Circulation-Driven Lung-Resident Memory CD8+ T Cells Following Respiratory Virus Infections. Front. Immunol., 2019, vol. 10: 733. doi: 10.3389/fimmu.2019.00733
  112. Takamura S., Yagi H., Hakata Y., Motozono C., McMaster S.R., Masumoto T., Fujisawa M., Chikaishi T., Komeda J., Itoh J., Umemura M., Kyusai A., Tomura M., Nakayama T., Woodland D.L., Kohlmeier J.E., Miyazawa M. Specific niches for lung-resident memory CD8+ T cells at the site of tissue regeneration enable CD69-independent maintenance. J. Exp. Med., 2016, vol. 213, no. 13, pp. 3057–3073. doi: 10.1084/jem.20160938
  113. Talayev V., Svetlova M., Zaichenko I., Voronina E., Babaykina O., Neumoina N., Perfilova K. CCR6+ T helper cells and regulatory T cells in the blood and gastric mucosa during Helicobacter pylori infection. Helicobacter, 2024, vol. 29, no. 3: e13097. doi: 10.1111/hel.13097
  114. Tanchot C., Guillaume S., Delon J., Bourgeois C., Franzke A., Sarukhan A., Trautmann A., Rocha B. Modifications of CD8+ T cell function during in vivo memory or tolerance induction. Immunity, 1998, vol. 8, no. 5, pp. 581–590. doi: 10.1016/s1074-7613(00)80563-4
  115. Thom J.T., Weber T.C., Walton S.M., Torti N., Oxenius A. The Salivary Gland Acts as a Sink for Tissue-Resident Memory CD8(+) T Cells, Facilitating Protection from Local Cytomegalovirus Infection. Cell Rep., 2015, vol. 13, no. 6, pp. 1125–1136. doi: 10.1016/j.celrep.2015.09.082
  116. Thome J.J., Bickham K.L., Ohmura Y., Kubota M., Matsuoka N., Gordon C., Granot T., Griesemer A., Lerner H., Kato T., Farber D.L. Early-life compartmentalization of human T cell differentiation and regulatory function in mucosal and lymphoid tissues. Nat. Med., 2016, vol. 22, no. 1, pp. 72–77. doi: 10.1038/nm.4008
  117. Tomov V.T., Palko O., Lau C.W., Pattekar A., Sun Y., Tacheva R., Bengsch B., Manne S., Cosma G.L., Eisenlohr L.C., Nice T.J., Virgin H.W., Wherry E.J. Differentiation and Protective Capacity of Virus-Specific CD8+ T Cells Suggest Murine Norovirus Persistence in an Immune-Privileged Enteric Niche. Immunity, 2017, vol. 47, no. 4, pp. 723–738.e5. doi: 10.1016/j.immuni.2017.09.017
  118. Topham D.J., Reilly E.C. Tissue-Resident Memory CD8+ T Cells: From Phenotype to Function. Front. Immunol., 2018, vol. 9: 515. doi: 10.3389/fimmu.2018.00515
  119. van der Gracht E.T., Behr F.M., Parga-Vidal L., Kragten N.A.M., van Dam T.J.P., Wesselink T.H., Sheridan B.S., Arens R., van Lier R.A.W., Stark R., van Gisbergen K.P.J.M. Tissue-resident memory CD8+ T cells shape local and systemic secondary T cell responses. Nat. Immunol., 2020, vol. 21, no. 9, pp. 1070–1081. doi: 10.1038/s41590-020-0723-4
  120. van der Gracht E.T., Schoonderwoerd M.J., van Duikeren S., Yilmaz A.N., Behr F.M., Colston J.M., Lee L.N., Yagita H., van Gisbergen K.P., Hawinkels L.J., Koning F., Klenerman P., Arens R. Adenoviral vaccines promote protective tissue-resident memory T cell populations against cancer. J. Immunother. Cancer, 2020, vol. 8, no. 2: e001133. doi: 10.1136/jitc-2020-001133
  121. Vezys V., Yates A., Casey K.A., Lanier G., Ahmed R., Antia R., Masopust D. Memory CD8 T-cell compartment grows in size with immunological experience. Nature, 2009, vol. 457, no. 7226, pp. 196–199. doi: 10.1038/nature07486
  122. Villablanca E.J., Cassani B., von Andrian U.H., Mora J.R. Blocking lymphocyte localization to the gastrointestinal mucosa as a therapeutic strategy for inflammatory bowel diseases. Gastroenterology, 2011, vol. 140, no. 6, pp. 1776–1784. doi: 10.1053/j.gastro.2011.02.015
  123. Wakim L.M., Woodward-Davis A., Bevan M.J. Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. Proc. Natl Acad. Sci. USA, 2010, vol. 107, no. 42, pp. 17872–17879. doi: 10.1073/pnas.1010201107
  124. Walzer T., Arpin C., Beloeil L., Marvel J. Differential in vivo persistence of two subsets of memory phenotype CD8 T cells defined by CD44 and CD122 expression levels. J. Immunol., 2002, vol. 168, no. 6, pp. 2704–2711. doi: 10.4049/jimmunol.168.6.2704
  125. Wang C., Kang S.G., Lee J., Sun Z., Kim C.H. The roles of CCR6 in migration of Th17 cells and regulation of effector T-cell balance in the gut. Mucosal Immunol., 2009, vol. 2, no. 2, pp. 173–183. doi: 10.1038/mi.2008.84
  126. Whitmire J.K., Eam B., Whitton J.L. Tentative T cells: memory cells are quick to respond, but slow to divide. PLoS Pathog., 2008, vol. 4, no. 4: e1000041. doi: 10.1371/journal.ppat.1000041
  127. Wijeyesinghe S., Beura L.K., Pierson M.J., Stolley J.M., Adam O.A., Ruscher R., Steinert E.M., Rosato P.C., Vezys V., Masopust D. Expansible residence decentralizes immune homeostasis. Nature, 2021, vol. 592, no. 7854, pp. 457–462. doi: 10.1038/s41586-021-03351-3
  128. Wu J., Madi A., Mieg A., Hotz-Wagenblatt A., Weisshaar N., Ma S., Mohr K., Schlimbach T., Hering M., Borgers H., Cui G. T Cell Factor 1 Suppresses CD103+ Lung Tissue-Resident Memory T Cell Development. Cell Rep., 2020, vol. 31, no. 1: 107484. doi: 10.1016/j.celrep.2020.03.048
  129. Wu T., Hu Y., Lee Y.T., Bouchard K.R., Benechet A., Khanna K., Cauley L.S. Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J. Leukoc. Biol., 2014, vol. 95, no. 2, pp. 215–224. doi: 10.1189/jlb.0313180
  130. Xu H., Zhou R., Chen Z. Tissue-Resident Memory T Cell: Ontogenetic Cellular Mechanism and Clinical Translation. Clin. Exp. Immunol., 2023, vol. 214, no. 3, pp. 249–259. doi: 10.1093/cei/uxad090
  131. Zaid A., Hor J.L., Christo S.N., Groom J.R., Heath W.R., Mackay L.K., Mueller S.N. Chemokine receptor-dependent control of skin tissue-resident memory T cell formation. J. Immunol., 2017, vol. 199, no. 7, pp. 2451–2459. doi: 10.4049/jimmunol.1700571

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рисунок. Стадии созревания CD8+ Т-клеток в ходе иммунного ответа

Скачать (294KB)

© Талаев В.Ю., Бабайкина О.Н., Светлова М.В., Заиченко И.Е., Куркова Е.В., 2025

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».